# New synthetic paths to neutron rich heavy nuclei W. Loveland

Oregon State University





Z<sub>CN</sub>

# Hot fusion predictions

- ${}^{249}$ Bk( ${}^{48}Ca, 3n$ ) ${}^{294}117 \sigma_{EVR}$ =1 pb.
- <sup>249</sup>Bk(<sup>50</sup>Ti,4n)<sup>295</sup>119 σ<sub>EVR</sub>=0.07 pb.
- ${}^{248}Cm({}^{54}Cr,4n){}^{302}120 \sigma_{EVR}=0.02 \text{ pb.}$
- ${}^{244}$ Pu( ${}^{58}$ Fe,4n) ${}^{302}$ 120  $\sigma_{EVR}$ =0.006 pb.
- <sup>238</sup>U(<sup>64</sup>Ni,3n)<sup>302</sup>120 σ<sub>EVR</sub>=0.004 pb.
   Based upon MNMS masses

### The SHEF at Dubna

#### ACCELERATORS

| Beam parameters                              | HI-Physics<br>U-400R                        | SHE-Factory<br>DC-280  |
|----------------------------------------------|---------------------------------------------|------------------------|
| Projectiles                                  | Stable and<br>RIB (T <sub>1/2</sub> > 0.1s) | Stable<br>only         |
| Projectile masses                            | 4He – 238U                                  | 40Ar – 86Kr            |
| Energy range                                 | 0.5 – 27.0 MeV/n                            | 5 – 8 MeV/n            |
| Energy resolution                            | 0.5%                                        | 1.5%                   |
| Beam intensity (for 48Ca)                    | 2.5 pμA                                     | 10-20 pµA              |
| SHE-research program                         | ≤30%                                        | ~100%                  |
| Registered decay chains of SHN<br>(per year) | 120 (now <mark>30</mark> )                  | ~5000                  |
| State of readiness                           | 75%                                         | In course of<br>design |

#### 150 times more SHE!

Significant new opportunities for study of the heaviest elements will exist

Stoyer, AAPT, July 2013

LLNL-PRES-640890

# The Way Forward

Synthesis of new neutron-rich nuclei
 Damped Collisions
 Multi-nucleon transfer reactions
 Reactions with radioactive beams (Fusion and Multi-nucleon transfer)

#### We are still far from the line of stability



Zagrebaev and Greiner, IRIS 10

# Damped Collisions—A new path to the superheavy nuclei?

- Zagrebaev and Greiner have predicted that damped collisions (such as <sup>232</sup>Th + <sup>250</sup>Cf, <sup>238</sup>U+<sup>238</sup>U, <sup>238</sup>U + <sup>248</sup>Cm) might produce new n-rich isotopes of Cn.
- Surrogate for this reaction is <sup>160</sup>Gd + <sup>184</sup>W.
   Because of difficulties in studying the damped collisions of the heaviest nuclei, it has been suggested to study this surrogate reaction.



А





Multi-nucleon transfer reactions (Pollarolo, IRIS10) Phenomenology of MNT

- The system does not reach charge equilibration. The population in the (N,Z) plane is dictated by the  $Q_{opt}$
- For each transferred neutron the cross section drops by a constant factor (3.5) (sequential transfer)
- The ONE-neutron transfer channel is much larger than the ONE-proton transfer channel
- The pure TWO-proton transfer is as large as the ONE-proton transfer (pair-transfer mode)

## MNT for the Actinides

• Conventional wisdom based on experiment is that you only make nuclei with  $Z < Z_{tat}$ .



Gregorich et al. PRC 35, 2117 (1985)

# An Example of Interest

#### FUTURE: Multinucleon transfer in the heavy element region







Calculations from Giovanni Pollarolo, Torino: Physics of multi-nucleon transfer reactions, EURISOL Town Meet. 2 – Abano Jan. 2002

## What's New?



Zagrebaev and Greiner



Zagrebaev and Greiner

 $^{136}Xe + ^{208}Pb$ 

A Surrogate that is Important for Several Reasons

• N=126 r-process waiting point



J.S. Grell, et al. (OSU) have studied this reaction at ATLAS using radiochemistry

#### Magnitude of Trans-Target Transfer Cross Sections

| Ν   | Product           | ΔZ | ΔΝ | σ(mb) | E <sub>cm</sub> (MeV) |
|-----|-------------------|----|----|-------|-----------------------|
| 125 | <sup>210</sup> At | +3 | -1 | 0.078 | 470                   |
| 125 | <sup>210</sup> At | +3 | -1 | 1.93  | 500                   |
| 125 | <sup>211</sup> Rn | +4 | -1 | 1.37  | 500                   |



## Hg (Z= 80) isotopic distributions





## Pt (Z= 76) isotopic distributions





Applying what we know about the synthesis of the heaviest nuclei to the problem of making new heavy nuclei with radioactive nuclear beams using complete fusion reactions

#### Calculational Model For RIB-Induced Reactions





#### What RIBs are likely to be most useful in the short term?





Ν

Cold fusion



#### New elements will NOT be produced at RIB facilities



### Atomic Physics and Chemistry of the Transactinides >5 atom/day list

> <sup>264</sup>Rf
 > <sup>265</sup>Db
 > <sup>268</sup>Sg
 > <sup>267</sup>Bh

 $^{252}Cf(^{16}C, 4n)$  $^{249}Bk(^{20}O, 4n)$  $^{252}Cf(^{20}O, 4n)$  $^{252}Cf(^{21}F, 6n)$ 

# What kind of reactions with RNBs are used to form n-rich nuclei?

| Reactants                            | Products               | FRIB Beam<br>Intensity (p/s) | Production<br>Rate (atoms/<br>day) |
|--------------------------------------|------------------------|------------------------------|------------------------------------|
| <sup>26</sup> Ne + <sup>248</sup> Cm | <sup>271</sup> Sg + 4n | 2.2 x 10 <sup>6</sup>        | 0.004                              |
| <sup>30</sup> Mg + <sup>244</sup> Pu | <sup>270</sup> Sg + 4n | 7.1 × 10 <sup>6</sup>        | 1                                  |
| <sup>29</sup> Mg + <sup>244</sup> Pu | <sup>269</sup> Sg + 4n | 3.6 × 10 <sup>7</sup>        | 0.2                                |
| <sup>20</sup> O + <sup>252</sup> Cf  | <sup>268</sup> Sg + 4n | $1.5 \times 10^{8}$          | 5                                  |
| <sup>23</sup> Ne + <sup>248</sup> Cm | <sup>267</sup> Sg + 4n | 1.6 × 10 <sup>8</sup>        | 1                                  |

Beta stability is at <sup>276</sup>Sg

# Targeted Radioactive Beams

- Special opportunities may exist if RNB facilities focus on producing a beam of particular interest.
- Example:  ${}^{46}$ Ar (from  ${}^{48}$ Ca fragmentation) FRIB "fast beam rate" 1.1 x 10<sup>10</sup>

FRIB "reaccelerated beam rate"  $2.3 \times 10^7$ 

| Reaction                                                      | Beam<br>Intensity<br>(p/s) | Cross<br>Section<br>(pb) | Atoms/day |
|---------------------------------------------------------------|----------------------------|--------------------------|-----------|
| <sup>238</sup> U( <sup>48</sup> Ca,<br>3n) <sup>283</sup> Cn  | 3x10 <sup>12</sup>         | 0.7                      | 0.5       |
| <sup>244</sup> Pu( <sup>46</sup> Ar,<br>4n) <sup>286</sup> Cn | 1.1 × 10 <sup>10</sup>     | 250                      | 0.6       |
| <sup>244</sup> Pu( <sup>46</sup> Ar,<br>3n) <sup>287</sup> Cn | 1.1 × 10 <sup>10</sup>     | 140                      | 0.3       |

# The Take-Away

- There are credible ways to make new nrich heavy nuclei that will produce longer lived nuclei of importance to atomic physics and chemistry.
- It is very difficult to approach N=184.