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Pulsar	  glitches:	  the	  observa4ons	  

• 	  Sudden	  spin-‐up	  of	  pulse	  frequency	  on	  4mescales	  
of	  <10s	  of	  minutes,	  against	  steady	  spin-‐down	  
• 	  First	  observed	  in	  1969	  in	  Crab,	  Vela	  pulsars	  

Reichley,	  Downs;	  Nature	  1969	   Radhakrishnan,	  Manchester;	  Nature	  1969	  



ΔΩ	  /Ω	  ≈	  10–	  6	  ,	  Δtg~	  1000	  days	  	  ΔΩ	  /Ω	  ≈	  10–	  9,	  Δtg~	  200	  days	  	  	  	  	  

Crab	   Vela	  

• 	  Ac4vity	  parameter:	  	  	  Ag	  =	  (1/Tobs)	  ΣΔΩ/Ω	  =	  average	  rate	  of	  rela4ve	  spin-‐up	  due	  to	  glitches	  
• 	  Crab:	  Ag	  ~	  10–	  9	  yr-‐1	  
• 	  Vela:	  Ag	  ~	  10–	  7	  yr-‐1	  

Pulsar	  glitches:	  the	  observa4ons	  

Espinoza	  et	  al	  2011	  
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TABLE 1
Parameters for the Glitch Epoch

51,559.3190a

Parameter Value

n (Hz) . . . . . . . . . . . . . . . . . 11.194615396005
(Hz s!1) . . . . . . . . . . . . .ṅ !1.55615E!11
(Hz s!2) . . . . . . . . . . . . .n̈ 1.028E!21
(Hz) . . . . . . . . . . . . . .Dnp 3.45435(5)E!05
(Hz s!1) . . . . . . . . . .˙Dnp !1.0482(2)E!13

tn . . . . . . . . . . . . . . . . . . . . . . minutes1.2! 0.2
00.53(3) days
03.29(3) days
19.07(2) days

(#10!6 Hz) . . . . . .Dnn 0.020(5)
0.31(2)
0.193(2)
0.2362(2)

DM . . . . . . . . . . . . . . . . . . . 67.99
a The errors are the 1 j values. The data

fit is from MJD 51,505 to 51,650 (from 1999
November to 2000 April). Fig. 2.—Previously unobserved fast decay, with 10 s folds. The other decay

terms are removed, revealing the later start and decay of the fastest term.

Fig. 1.—Arrival time residuals from the preglitch model for both the three-frequency (left) and single-pulse (right) systems. The left panel has folds of 2 minutes,
and the right panel has folds of 10 s.

However, it should be noted that some investigators set the
permanent change terms, and , to zero. We have allowed˙ ¨Dn Dnp p

to take nonzero values, but we keep as zero. Both of˙ ¨Dn Dnp p
these terms affect only the longest timescales, where both tim-
ing noise and the occurrence of the subsequent glitches make
definitive separation impossible.
The data presented here were recorded between MJD 51,505

and 51,650. The arrival time data have been transformed to the
solar system barycenter using standard techniques. The position
and proper motion of the Vela pulsar were defined by data from
the radio VLBI position of Legge (2001). The recorded TOAs
from all frequencies and both systems were fitted in the pro-
gram TEMPO.1 The results of this fit are given in Table 1.
The left panel of Figure 1 shows the residuals from the

prejump fit for data taken on 2000 January 16 (MJD 51,559)
with the full polarization system. Shortly after 07:34 UT, the
residuals diverge from the fit, indicating a sudden decrease in
pulse period. The right panel of Figure 1 shows an hour of
data starting at MJD 51,559.3. Individual data points represent
10 s averages constructed from the single-pulse data. The period
jump occurs on a very short timescale, without warning. The
observations are consistent with an instantaneous change in
period; modeling has shown that a spin-up timescale of 40 s
would produce a 3 j signal.

1 See http://pulsar.princeton.edu/tempo (J. Taylor, R. Manchester, D. Nice,
J. Weisberg, A. Irwin, N. Wex, & E. Standish 1970).

The separation into four timescales is clear. The longer three
decay terms are similar to those previously reported (Alpar et
al. 1993; Flanagan 1990) and are in an approximately equal
ratio of 5.9 : 5.7. These have been associated with the vortex
creep models by Alpar et al. (1993) and others. The fast decay
timescale, not previously observed (or observable), is shown
separated from the other effects in Figure 2. We have subtracted
the terms found using TEMPO in the 2 minute data from the
single-pulse data folded for 10 s. In this plot, a gradual spin-
up (as opposed to an instantaneous one) would be a negative
excursion around the projected time of the glitch since we
would have overestimated the phase in the model. We see a
positive excursion, followed by a rapid decay. A positive ex-
cursion could be produced by the pulsar slowing down just
before the glitch or, more likely, if the estimate of the glitch
epoch was too early because there was an extra component not
resolvable in the 2 minute data. Once the original fit was re-
moved, this would give a linear rise with the gradient foundDn
in the 2 minutes data, followed by a decay. We have fitted this
rise ( ) followed by a fourth exponential decay term to giveDnDt
the true glitch epoch and the fastest decay term.

4. THE SINGLE-PULSE SYSTEM

Since the acceleration of the crust cannot be instantaneous,
it should be possible to observe the spin-up of the rotation
period of the pulsar. The parallel single-pulse system designed

Pulsar	  glitches:	  the	  observa4ons	  

Multifluid models of pulsar glitches
Brynmor Haskell 

(Flanagan 1996)

Vela Glitches

�(t) = �0 + �̇0t +
1
2
�̈0t

2 + ��p + ��̇pt +
�

i

��i exp (�t/⇥i)

(Dodson, McCulloch & Lewis, 2002)

Vela 2000 glitch

2000	  Vela	  glitch:	  Dodson,	  McCulloch,	  Lewis	  2002	  	  

Glitch	  rise	  4me	  tglitch	  <	  40s	  
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Pulsar	  glitches:	  the	  candidate	  model	  

•  Starquake	  models:	  cannot	  explain	  glitch	  ac4vity	  of	  even	  Crab	  pulsar	  
•  Two	  component	  models	  currently	  the	  leading	  class	  of	  candidates	  

•  (A)	  Visible	  component	  (observed	  rota4onal	  frequency):	  couples	  to	  B-‐field	  on	  t<40s	  
•  At	  least	  crust	  lakce	  and	  protons	  in	  core	  
•  Usually	  assumed	  to	  be	  core	  neutrons	  too	  

•  (B)	  Rota4onally	  decoupled	  component:	  crust	  superfluid	  neutrons?	  



Pulsar	  glitches:	  the	  two	  component	  model	  
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• 	  Two	  dynamically	  dis4nct	  components	  of	  the	  star,	  A	  and	  B	  
• 	  The	  B-‐field	  is	  coupled	  to	  component	  A	  on	  short	  4mescales	  (<<	  
spin	  period);	  we	  see	  only	  frequency	  of	  component	  A	  
• 	  Ini4ally,	  component	  B	  does	  not	  couple	  to	  A	  

A	  

B	  

Ωlag	  
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• 	  Two	  dynamically	  dis4nct	  components	  of	  the	  star,	  A	  and	  B	  
• 	  The	  B-‐field	  is	  coupled	  to	  component	  A	  on	  short	  4mescales	  (<<	  
spin	  period);	  we	  see	  only	  frequency	  of	  component	  A	  
• 	  Ini4ally,	  component	  B	  does	  not	  couple	  to	  A	  
• 	  At	  some	  cri4cal	  frequency	  lag	  between	  A	  and	  B,	  Ωlag,	  a	  strong	  
coupling	  sets	  in	  between	  them	  –	  angular	  momentum	  transferred	  
from	  B	  to	  A	  >	  glitch,	  size	  ΔΩ	  

A	  

B	  

ΔΩ	  



Pulsar	  glitches:	  the	  two	  component	  model	  
Sp
in
	  fr
eq

ue
nc
y	  

Time	  

• 	  Two	  dynamically	  dis4nct	  components	  of	  the	  star,	  A	  and	  B	  
• 	  The	  B-‐field	  is	  coupled	  to	  component	  A	  on	  short	  4mescales	  (<<	  
spin	  period);	  we	  see	  only	  frequency	  of	  component	  A	  
• 	  Ini4ally,	  component	  B	  does	  not	  couple	  to	  A	  
• 	  At	  some	  cri4cal	  frequency	  lag	  between	  A	  and	  B,	  Ωlag,	  a	  strong	  
coupling	  sets	  in	  between	  them	  –	  angular	  momentum	  transferred	  
from	  B	  to	  A	  
	  
	  
	  
	  
	  
	  
• 	  Aper	  angular	  momentum	  transfer,	  the	  components	  decouple	  

A	  

B	  



Pulsar	  glitches:	  the	  two	  component	  model	  
Sp
in
	  fr
eq

ue
nc
y	  

Time	  

• 	  Two	  dynamically	  dis4nct	  components	  of	  the	  star,	  A	  and	  B	  
• 	  The	  B-‐field	  is	  coupled	  to	  component	  A	  on	  short	  4mescales	  (<<	  
spin	  period);	  we	  see	  only	  frequency	  of	  component	  A	  
• 	  Ini4ally,	  component	  B	  does	  not	  couple	  to	  A	  
• 	  At	  some	  cri4cal	  frequency	  lag	  between	  A	  and	  B,	  Ωlag,	  a	  strong	  
coupling	  sets	  in	  between	  them	  –	  angular	  momentum	  transferred	  
from	  B	  to	  A	  
	  
	  
	  
	  
	  
	  
• 	  Aper	  angular	  momentum	  transfer,	  the	  components	  decouple	  
• 	  …	  and	  so	  on	  

A	  

B	  
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JA=	  IA	  ΩA	  
	  
	  
	  
	  
JB=	  IB	  ΩB	  	  

• 	  Between	  glitches,	  angular	  momentum	  accumulates	  in	  the	  reservoir	  (B);	  	  
released	  at	  4me	  of	  glitch	  
• 	  Angular	  momentum	  transfer	  during	  glitch:	  ΔJ	  =	  IBΔΩB	  =	  IAΔΩA	  
• 	  Component	  B	  needs	  to	  be	  large	  enough	  angular	  momentum	  reservoir	  to	  

	  	  explain	  observed	  largest	  glitches	  (Vela)	  



Pulsar	  glitches:	  the	  role	  of	  core	  neutron	  superfluidity	  

•  Neutrons	  in	  core	  and	  crust	  expected	  (from	  theory)	  to	  be	  superfluid	  for	  pulsars	  older	  
	  than	  ≈	  100yr	  
•  Some	  suppor4ng	  evidence	  from	  rapid	  Cas	  A	  cooling	  

	  (Shternin	  et	  al	  2011,	  Page	  et	  al	  2011)	  
•  Superfluid	  component	  cannot	  support	  bulk	  rota4on	  (gap	  

	  suppresses	  interac4ons	  which	  cause,	  e.g.,	  fric4on)	  
•  Vor4city	  quan4zed	  

Polar	  cross	  sec4on	   Equatorial	  cross	  sec4on	   • 	  Spacing	  of	  n	  vor4ces	  ~	  10-‐2	  cm	  
• 	  As	  frequency	  decreases,	  vor4ces	  
move	  out	  radially	  from	  the	  spin	  axis	  
• 	  Protons	  entrained	  by	  vor4ces	  
-‐  electron	  scaBering	  couples	  

vor4ces	  to	  crust	  on	  4mescales	  
tmf	  ≈	  10-‐10,000s	  

-‐  Frac4on	  of	  core	  neutrons	  	  
	  	  	  	  	  coupled	  to	  crust	  on	  glitch	  
	  	  	  	  	  4mescales	  Yg	  ≈	  tglitch/tmf	  =	  1	  –	  10-‐3	  
	  	  



Pulsar	  glitches:	  the	  role	  of	  crust	  neutron	  superfluidity	  

• 	  Energy	  of	  nucleus-‐vortex	  interac4on	  
either	  favors	  vortex	  cores	  threading	  nuclei	  
or	  between	  nuclei	  in	  inner	  crust	  (~3	  MeV/nucleus)	  
• 	  Either	  way,	  work	  must	  be	  done	  by	  an	  external	  
force	  to	  move	  vor4ces	  through	  the	  lakce	  
• 	  The	  vor4ces	  are	  said	  to	  be	  pinned	  

• 	  Pinning	  can	  sustain	  differen4al	  velocity	  up	  to	  ~	  10	  rad	  /	  s	  
⇒ large	  angular	  momentum	  reservoir!	  (Large	  enough?)	  
• 	  When	  some	  cri4cal	  velocity	  differen4al	  is	  reached,	  
Magnus	  force	  unpins	  vor4ces	  >	  angular	  momentum	  
transfer	  to	  crustal	  lakce	  



Pulsar	  glitches:	  the	  role	  of	  crust	  neutron	  superfluidity	  

Chamel	  PRC85,	  03992	  (2012)	  

•  Bragg	  scaBering	  of	  neutrons	  off	  nuclei	  in	  crust	  
•  Results	  in	  neutron	  band	  structure	  analogous	  to	  	  
electrons	  in	  metals	  
•  Couples	  80%	  free	  neutrons	  to	  lakce	  
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JA=	  IA	  ΩA	  
	  
	  
	  
	  
JB=	  IB	  ΩB	  	  

• 	  Between	  glitches,	  angular	  momentum	  accumulates	  in	  the	  reservoir	  (A);	  	  
released	  at	  4me	  of	  glitch	  
• 	  Angular	  momentum	  transfer	  during	  glitch:	  ΔJ	  =	  IBΔΩB	  =	  IAΔΩA	  
• 	  Component	  A	  needs	  to	  be	  large	  enough	  angular	  momentum	  reservoir	  to	  

	  	  explain	  observed	  giant	  glitches	  

Crust	  superfluid	  neutrons	  

Crustal	  lakce,	  core	  protons,	  	  
(some)	  core	  neutrons	  



Outer	  Crust	  

Inner	  Crust	  	  

	  Core	  

Ω	  

Confron4ng	  model	  with	  observa4on	  

ΔI	  
I	  

(Link,	  Epstein,	  Lakmer;	  PRL83	  1999)	  

2 J. Hooker, W. G. Newton and Bao-An Li

we shall referred to as the charged component of the star),
�I/I � 1.6% ⇥ G (Link et al. 1999). Assuming the angular
momentum reservoir is the whole of the crustal neutron su-
perfluid �I = Icsf and the charged component it couples to
is essentially the whole star I = Itot, many realistic neutron
star (NS) equations of state (EoSs) can satisfy the condi-
tion �I/I � 1%, and indeed it can be used to constrain
the NS EoS (Lorenz et al. 1993; Link et al. 1999). However,
recent calculations of the strength of entrainment of con-
duction neutrons by the crustal lattice via Bragg scattering
suggest that the fraction of neutrons in the crust decoupled
from the charged component of the star and able to act as
the angular momentum reservoir is e⇤ectively �I ⇤ 0.2Icsf ,
making �I/I too small to explain the observed glitch sizes
at a first glance (Chamel 2012a,b; Andersson et al. 2012),
and thus suggesting one must go beyond the crust to find the
angular momentum reservoir. These studies assume a tight
coupling between crust and core so that I ⇤ Itot. However,
estimates of the crust-core coupling timescales due to inter-
actions of neutron vortices and type-I or type-II supercon-
ducting protons (Alpar & Sauls (1988); Sedrakian (2005);
Andersson et al. (2006); Jones (2006); Babaev (2009); Link
(2012)) do not preclude the possibility of only a small frac-
tion of the core neutrons being coupled to the crust at the
time of glitch, and in the latter case suggest that this is in
fact likely. Therefore it is possible that I ⌅ Itot, allowing
the ratio �I/I to satisfy the lower bound of 1.6% again with
only crustal superfluid neutrons involved.

Recently, a detailed model of such a scenario incorpo-
rating microscopic calculations of the pinning force through-
out the crust and a hydrodynamic evolution of the vor-
tices, was shown to explain qualitatively the Vela glitch
sizes and post-glitch rotational evolution and potentially
constrain the EOS (Haskell et al. 2012; Pizzochero 2011;
Seveso et al. 2012), despite remaining uncertainties in as-
pects of the glitch model such as the trigger mechanism
(Glampedakis & Andersson 2009; Warszawski et al. 2012)
and ignoring the entrainment of neutrons in the crust. In
this model the dynamics of the vortices are such that, on
timsescales of ⇤ 3yrs, crustal superfluid neutrons depin in
a front which moves radially outwards from the base of the
crust until it reaches densities at which the pinning force is a
maximum. At this point, the accumulated angular momen-
tum of the pinning front is transferred to the charged com-
ponent of the star suddenly, and the glitch occurs. Due to
the analogy of pushing snow slowly up a hill before releasing
it down the other side, it is referred to as the “snowplough”
model by the authors. One feature of the model is that the
vortices are pinned only in the region where they are totally
immersed in the crust, an equatorial ring which accounts for
⇤ 10% the mass of the whole crust, therefore reducing �I
by a factor of ⇤10. In this model, the crust-core coupling is
such that I ⌅ Itot, and so the ratio �I/I is still able to ac-
count for the observed Vela glitch activity for selected EoSs
(Seveso et al. 2012). In addition, it can also account for the
initial relative post-glitch acceleration of the crust inferred
from the 2000 Vela glitch timing data (Dodson et al. 2002).
With entrainment yet to be taken into account, however, it
remains an open question as to the e⌃cacy of the the model.

The aim of this paper is to examine the range of pre-
dictions for �I/I and for the initial post-glitch acceleration
within the framework of the “snowplough” model by varying

the most uncertain nuclear matter parameters over their ex-
perimentally and theoretically constrained ranges, and tak-
ing into account entrainment in a simple way akin to the
recent studies (Chamel 2012a; Andersson et al. 2012). To
do this, we shall apply systematically and consistently gen-
erated sequences of crust and core EOSs together with the
relevant crust compositions (Newton et al. 2011) to mod-
eling glitches for the first time. The consistent modeling of
crust and core properties when exploring the dependence of
neutron star observables has been presented before (Gear-
heart et al. 2011; Wen et al. 2012; Newton et al. 2011), and
here extends to modeling the crust thickness, density of su-
perfluid neutrons throughout the crust, core EOS and core
proton fraction using the same underlying nuclear matter
EOSs.

Much e⇤ort has been devoted to constraining the EOS
of nuclear and neutron star matter, particularly through
constraining the density dependence of the symmetry en-
ergy at nuclear saturation density n0, parameterized by
L = 3n0p0 where p0 is the pressure of pure neutron matter
at saturation density, which is strongly correlated with the
pressure in neutron stars at that density. Nuclear experimen-
tal probes (for a recent review see (Tsang et al. 2012)) give a
conservative range of L = 25�105 MeV, although some more
recent results on the nuclear experimental side (Lattimer
& Lim 2012), as well as tentative constraints from neutron
star observation (Newton & Li 2009; Gearheart et al. 2011;
Wen et al. 2012; Steiner & Gandolfi 2012) and from ab-initio
pure neutron matter calculations (Gezerlis & Carlson 2010;
Hebeler & Schwenk 2010; Gandolfi et al. 2012) favor the
lower half of that range (although, for a counter-example,
see e.g. (Sotani et al. 2012)). The high-density behavior of
the EOS is even more uncertain both theoretically and ex-
perimentally (Xiao et al. 2009; Russotto et al. 2011), even
if one restricts the composition to purely nucleonic matter,
with some of the only constraints coming from analysis of
heavy-ion collisions (Danielewicz et al. 2002) and the ob-
servation of a 1.97M� neutron star (Demorest et al. 2010).
In this paper we shall explore the impact of systematically
varying the density dependence of the symmetry energy L
at saturation density on the glitch model.

In Section 2 we describe our glitch modeling and series
of EOSs and how we compare with observational quantities.
In Section 3 we present and discuss our results and in Section
4 we discuss our conclusions.

2 THE GLITCH MODEL

The observed angular frequency, ⇥, of a pulsar is presumed
to be that of its ionic crustal lattice in which the magnetic
field lines are anchored. When considering glitch sizes and
immediate post-glitch evolution, it is important to define
that component of the star strongly coupled to the lattice
on timescales comparable with the glitch rise time, which is
observationally constrained to be ⇥ 40s (Dodson et al. 2002).
In our minimal model of the core which contains purely nu-
cleonic matter, this component contains the core protons
and some fraction of the core neutrons, and we shall refer
to it as the charged component of the star.

We will outline the glitch mechanism according to the
recently studied “snowplough” model, the first attempt at a

c� 0000 RAS, MNRAS 000, ??–??

OK	  for	  many	  reasonable	  EOSs	  
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Confron4ng	  model	  with	  observa4on	  

Crust	  entrainment	  kills	  crust	  superfluid	  	  
origin	  for	  glitches?	  	  
(Chamel,	  2012;	  Andersson	  et	  al2012)	  

ΔI	  
I	  

ΔI	  reduced	  by	  factor	  of	  5	  
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we shall referred to as the charged component of the star),
�I/I � 1.6% ⇥ G (Link et al. 1999). Assuming the angular
momentum reservoir is the whole of the crustal neutron su-
perfluid �I = Icsf and the charged component it couples to
is essentially the whole star I = Itot, many realistic neutron
star (NS) equations of state (EoSs) can satisfy the condi-
tion �I/I � 1%, and indeed it can be used to constrain
the NS EoS (Lorenz et al. 1993; Link et al. 1999). However,
recent calculations of the strength of entrainment of con-
duction neutrons by the crustal lattice via Bragg scattering
suggest that the fraction of neutrons in the crust decoupled
from the charged component of the star and able to act as
the angular momentum reservoir is e⇤ectively �I ⇤ 0.2Icsf ,
making �I/I too small to explain the observed glitch sizes
at a first glance (Chamel 2012a,b; Andersson et al. 2012),
and thus suggesting one must go beyond the crust to find the
angular momentum reservoir. These studies assume a tight
coupling between crust and core so that I ⇤ Itot. However,
estimates of the crust-core coupling timescales due to inter-
actions of neutron vortices and type-I or type-II supercon-
ducting protons (Alpar & Sauls (1988); Sedrakian (2005);
Andersson et al. (2006); Jones (2006); Babaev (2009); Link
(2012)) do not preclude the possibility of only a small frac-
tion of the core neutrons being coupled to the crust at the
time of glitch, and in the latter case suggest that this is in
fact likely. Therefore it is possible that I ⌅ Itot, allowing
the ratio �I/I to satisfy the lower bound of 1.6% again with
only crustal superfluid neutrons involved.

Recently, a detailed model of such a scenario incorpo-
rating microscopic calculations of the pinning force through-
out the crust and a hydrodynamic evolution of the vor-
tices, was shown to explain qualitatively the Vela glitch
sizes and post-glitch rotational evolution and potentially
constrain the EOS (Haskell et al. 2012; Pizzochero 2011;
Seveso et al. 2012), despite remaining uncertainties in as-
pects of the glitch model such as the trigger mechanism
(Glampedakis & Andersson 2009; Warszawski et al. 2012)
and ignoring the entrainment of neutrons in the crust. In
this model the dynamics of the vortices are such that, on
timsescales of ⇤ 3yrs, crustal superfluid neutrons depin in
a front which moves radially outwards from the base of the
crust until it reaches densities at which the pinning force is a
maximum. At this point, the accumulated angular momen-
tum of the pinning front is transferred to the charged com-
ponent of the star suddenly, and the glitch occurs. Due to
the analogy of pushing snow slowly up a hill before releasing
it down the other side, it is referred to as the “snowplough”
model by the authors. One feature of the model is that the
vortices are pinned only in the region where they are totally
immersed in the crust, an equatorial ring which accounts for
⇤ 10% the mass of the whole crust, therefore reducing �I
by a factor of ⇤10. In this model, the crust-core coupling is
such that I ⌅ Itot, and so the ratio �I/I is still able to ac-
count for the observed Vela glitch activity for selected EoSs
(Seveso et al. 2012). In addition, it can also account for the
initial relative post-glitch acceleration of the crust inferred
from the 2000 Vela glitch timing data (Dodson et al. 2002).
With entrainment yet to be taken into account, however, it
remains an open question as to the e⌃cacy of the the model.

The aim of this paper is to examine the range of pre-
dictions for �I/I and for the initial post-glitch acceleration
within the framework of the “snowplough” model by varying

the most uncertain nuclear matter parameters over their ex-
perimentally and theoretically constrained ranges, and tak-
ing into account entrainment in a simple way akin to the
recent studies (Chamel 2012a; Andersson et al. 2012). To
do this, we shall apply systematically and consistently gen-
erated sequences of crust and core EOSs together with the
relevant crust compositions (Newton et al. 2011) to mod-
eling glitches for the first time. The consistent modeling of
crust and core properties when exploring the dependence of
neutron star observables has been presented before (Gear-
heart et al. 2011; Wen et al. 2012; Newton et al. 2011), and
here extends to modeling the crust thickness, density of su-
perfluid neutrons throughout the crust, core EOS and core
proton fraction using the same underlying nuclear matter
EOSs.

Much e⇤ort has been devoted to constraining the EOS
of nuclear and neutron star matter, particularly through
constraining the density dependence of the symmetry en-
ergy at nuclear saturation density n0, parameterized by
L = 3n0p0 where p0 is the pressure of pure neutron matter
at saturation density, which is strongly correlated with the
pressure in neutron stars at that density. Nuclear experimen-
tal probes (for a recent review see (Tsang et al. 2012)) give a
conservative range of L = 25�105 MeV, although some more
recent results on the nuclear experimental side (Lattimer
& Lim 2012), as well as tentative constraints from neutron
star observation (Newton & Li 2009; Gearheart et al. 2011;
Wen et al. 2012; Steiner & Gandolfi 2012) and from ab-initio
pure neutron matter calculations (Gezerlis & Carlson 2010;
Hebeler & Schwenk 2010; Gandolfi et al. 2012) favor the
lower half of that range (although, for a counter-example,
see e.g. (Sotani et al. 2012)). The high-density behavior of
the EOS is even more uncertain both theoretically and ex-
perimentally (Xiao et al. 2009; Russotto et al. 2011), even
if one restricts the composition to purely nucleonic matter,
with some of the only constraints coming from analysis of
heavy-ion collisions (Danielewicz et al. 2002) and the ob-
servation of a 1.97M� neutron star (Demorest et al. 2010).
In this paper we shall explore the impact of systematically
varying the density dependence of the symmetry energy L
at saturation density on the glitch model.

In Section 2 we describe our glitch modeling and series
of EOSs and how we compare with observational quantities.
In Section 3 we present and discuss our results and in Section
4 we discuss our conclusions.

2 THE GLITCH MODEL

The observed angular frequency, ⇥, of a pulsar is presumed
to be that of its ionic crustal lattice in which the magnetic
field lines are anchored. When considering glitch sizes and
immediate post-glitch evolution, it is important to define
that component of the star strongly coupled to the lattice
on timescales comparable with the glitch rise time, which is
observationally constrained to be ⇥ 40s (Dodson et al. 2002).
In our minimal model of the core which contains purely nu-
cleonic matter, this component contains the core protons
and some fraction of the core neutrons, and we shall refer
to it as the charged component of the star.

We will outline the glitch mechanism according to the
recently studied “snowplough” model, the first attempt at a
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we shall referred to as the charged component of the star),
�I/I � 1.6% ⇥ G (Link et al. 1999). Assuming the angular
momentum reservoir is the whole of the crustal neutron su-
perfluid �I = Icsf and the charged component it couples to
is essentially the whole star I = Itot, many realistic neutron
star (NS) equations of state (EoSs) can satisfy the condi-
tion �I/I � 1%, and indeed it can be used to constrain
the NS EoS (Lorenz et al. 1993; Link et al. 1999). However,
recent calculations of the strength of entrainment of con-
duction neutrons by the crustal lattice via Bragg scattering
suggest that the fraction of neutrons in the crust decoupled
from the charged component of the star and able to act as
the angular momentum reservoir is e⇤ectively �I ⇤ 0.2Icsf ,
making �I/I too small to explain the observed glitch sizes
at a first glance (Chamel 2012a,b; Andersson et al. 2012),
and thus suggesting one must go beyond the crust to find the
angular momentum reservoir. These studies assume a tight
coupling between crust and core so that I ⇤ Itot. However,
estimates of the crust-core coupling timescales due to inter-
actions of neutron vortices and type-I or type-II supercon-
ducting protons (Alpar & Sauls (1988); Sedrakian (2005);
Andersson et al. (2006); Jones (2006); Babaev (2009); Link
(2012)) do not preclude the possibility of only a small frac-
tion of the core neutrons being coupled to the crust at the
time of glitch, and in the latter case suggest that this is in
fact likely. Therefore it is possible that I ⌅ Itot, allowing
the ratio �I/I to satisfy the lower bound of 1.6% again with
only crustal superfluid neutrons involved.

Recently, a detailed model of such a scenario incorpo-
rating microscopic calculations of the pinning force through-
out the crust and a hydrodynamic evolution of the vor-
tices, was shown to explain qualitatively the Vela glitch
sizes and post-glitch rotational evolution and potentially
constrain the EOS (Haskell et al. 2012; Pizzochero 2011;
Seveso et al. 2012), despite remaining uncertainties in as-
pects of the glitch model such as the trigger mechanism
(Glampedakis & Andersson 2009; Warszawski et al. 2012)
and ignoring the entrainment of neutrons in the crust. In
this model the dynamics of the vortices are such that, on
timsescales of ⇤ 3yrs, crustal superfluid neutrons depin in
a front which moves radially outwards from the base of the
crust until it reaches densities at which the pinning force is a
maximum. At this point, the accumulated angular momen-
tum of the pinning front is transferred to the charged com-
ponent of the star suddenly, and the glitch occurs. Due to
the analogy of pushing snow slowly up a hill before releasing
it down the other side, it is referred to as the “snowplough”
model by the authors. One feature of the model is that the
vortices are pinned only in the region where they are totally
immersed in the crust, an equatorial ring which accounts for
⇤ 10% the mass of the whole crust, therefore reducing �I
by a factor of ⇤10. In this model, the crust-core coupling is
such that I ⌅ Itot, and so the ratio �I/I is still able to ac-
count for the observed Vela glitch activity for selected EoSs
(Seveso et al. 2012). In addition, it can also account for the
initial relative post-glitch acceleration of the crust inferred
from the 2000 Vela glitch timing data (Dodson et al. 2002).
With entrainment yet to be taken into account, however, it
remains an open question as to the e⌃cacy of the the model.

The aim of this paper is to examine the range of pre-
dictions for �I/I and for the initial post-glitch acceleration
within the framework of the “snowplough” model by varying

the most uncertain nuclear matter parameters over their ex-
perimentally and theoretically constrained ranges, and tak-
ing into account entrainment in a simple way akin to the
recent studies (Chamel 2012a; Andersson et al. 2012). To
do this, we shall apply systematically and consistently gen-
erated sequences of crust and core EOSs together with the
relevant crust compositions (Newton et al. 2011) to mod-
eling glitches for the first time. The consistent modeling of
crust and core properties when exploring the dependence of
neutron star observables has been presented before (Gear-
heart et al. 2011; Wen et al. 2012; Newton et al. 2011), and
here extends to modeling the crust thickness, density of su-
perfluid neutrons throughout the crust, core EOS and core
proton fraction using the same underlying nuclear matter
EOSs.

Much e⇤ort has been devoted to constraining the EOS
of nuclear and neutron star matter, particularly through
constraining the density dependence of the symmetry en-
ergy at nuclear saturation density n0, parameterized by
L = 3n0p0 where p0 is the pressure of pure neutron matter
at saturation density, which is strongly correlated with the
pressure in neutron stars at that density. Nuclear experimen-
tal probes (for a recent review see (Tsang et al. 2012)) give a
conservative range of L = 25�105 MeV, although some more
recent results on the nuclear experimental side (Lattimer
& Lim 2012), as well as tentative constraints from neutron
star observation (Newton & Li 2009; Gearheart et al. 2011;
Wen et al. 2012; Steiner & Gandolfi 2012) and from ab-initio
pure neutron matter calculations (Gezerlis & Carlson 2010;
Hebeler & Schwenk 2010; Gandolfi et al. 2012) favor the
lower half of that range (although, for a counter-example,
see e.g. (Sotani et al. 2012)). The high-density behavior of
the EOS is even more uncertain both theoretically and ex-
perimentally (Xiao et al. 2009; Russotto et al. 2011), even
if one restricts the composition to purely nucleonic matter,
with some of the only constraints coming from analysis of
heavy-ion collisions (Danielewicz et al. 2002) and the ob-
servation of a 1.97M� neutron star (Demorest et al. 2010).
In this paper we shall explore the impact of systematically
varying the density dependence of the symmetry energy L
at saturation density on the glitch model.

In Section 2 we describe our glitch modeling and series
of EOSs and how we compare with observational quantities.
In Section 3 we present and discuss our results and in Section
4 we discuss our conclusions.

2 THE GLITCH MODEL

The observed angular frequency, ⇥, of a pulsar is presumed
to be that of its ionic crustal lattice in which the magnetic
field lines are anchored. When considering glitch sizes and
immediate post-glitch evolution, it is important to define
that component of the star strongly coupled to the lattice
on timescales comparable with the glitch rise time, which is
observationally constrained to be ⇥ 40s (Dodson et al. 2002).
In our minimal model of the core which contains purely nu-
cleonic matter, this component contains the core protons
and some fraction of the core neutrons, and we shall refer
to it as the charged component of the star.

We will outline the glitch mechanism according to the
recently studied “snowplough” model, the first attempt at a
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we shall referred to as the charged component of the star),
�I/I � 1.6% ⇥ G (Link et al. 1999). Assuming the angular
momentum reservoir is the whole of the crustal neutron su-
perfluid �I = Icsf and the charged component it couples to
is essentially the whole star I = Itot, many realistic neutron
star (NS) equations of state (EoSs) can satisfy the condi-
tion �I/I � 1%, and indeed it can be used to constrain
the NS EoS (Lorenz et al. 1993; Link et al. 1999). However,
recent calculations of the strength of entrainment of con-
duction neutrons by the crustal lattice via Bragg scattering
suggest that the fraction of neutrons in the crust decoupled
from the charged component of the star and able to act as
the angular momentum reservoir is e⇤ectively �I ⇤ 0.2Icsf ,
making �I/I too small to explain the observed glitch sizes
at a first glance (Chamel 2012a,b; Andersson et al. 2012),
and thus suggesting one must go beyond the crust to find the
angular momentum reservoir. These studies assume a tight
coupling between crust and core so that I ⇤ Itot. However,
estimates of the crust-core coupling timescales due to inter-
actions of neutron vortices and type-I or type-II supercon-
ducting protons (Alpar & Sauls (1988); Sedrakian (2005);
Andersson et al. (2006); Jones (2006); Babaev (2009); Link
(2012)) do not preclude the possibility of only a small frac-
tion of the core neutrons being coupled to the crust at the
time of glitch, and in the latter case suggest that this is in
fact likely. Therefore it is possible that I ⌅ Itot, allowing
the ratio �I/I to satisfy the lower bound of 1.6% again with
only crustal superfluid neutrons involved.

Recently, a detailed model of such a scenario incorpo-
rating microscopic calculations of the pinning force through-
out the crust and a hydrodynamic evolution of the vor-
tices, was shown to explain qualitatively the Vela glitch
sizes and post-glitch rotational evolution and potentially
constrain the EOS (Haskell et al. 2012; Pizzochero 2011;
Seveso et al. 2012), despite remaining uncertainties in as-
pects of the glitch model such as the trigger mechanism
(Glampedakis & Andersson 2009; Warszawski et al. 2012)
and ignoring the entrainment of neutrons in the crust. In
this model the dynamics of the vortices are such that, on
timsescales of ⇤ 3yrs, crustal superfluid neutrons depin in
a front which moves radially outwards from the base of the
crust until it reaches densities at which the pinning force is a
maximum. At this point, the accumulated angular momen-
tum of the pinning front is transferred to the charged com-
ponent of the star suddenly, and the glitch occurs. Due to
the analogy of pushing snow slowly up a hill before releasing
it down the other side, it is referred to as the “snowplough”
model by the authors. One feature of the model is that the
vortices are pinned only in the region where they are totally
immersed in the crust, an equatorial ring which accounts for
⇤ 10% the mass of the whole crust, therefore reducing �I
by a factor of ⇤10. In this model, the crust-core coupling is
such that I ⌅ Itot, and so the ratio �I/I is still able to ac-
count for the observed Vela glitch activity for selected EoSs
(Seveso et al. 2012). In addition, it can also account for the
initial relative post-glitch acceleration of the crust inferred
from the 2000 Vela glitch timing data (Dodson et al. 2002).
With entrainment yet to be taken into account, however, it
remains an open question as to the e⌃cacy of the the model.

The aim of this paper is to examine the range of pre-
dictions for �I/I and for the initial post-glitch acceleration
within the framework of the “snowplough” model by varying

the most uncertain nuclear matter parameters over their ex-
perimentally and theoretically constrained ranges, and tak-
ing into account entrainment in a simple way akin to the
recent studies (Chamel 2012a; Andersson et al. 2012). To
do this, we shall apply systematically and consistently gen-
erated sequences of crust and core EOSs together with the
relevant crust compositions (Newton et al. 2011) to mod-
eling glitches for the first time. The consistent modeling of
crust and core properties when exploring the dependence of
neutron star observables has been presented before (Gear-
heart et al. 2011; Wen et al. 2012; Newton et al. 2011), and
here extends to modeling the crust thickness, density of su-
perfluid neutrons throughout the crust, core EOS and core
proton fraction using the same underlying nuclear matter
EOSs.

Much e⇤ort has been devoted to constraining the EOS
of nuclear and neutron star matter, particularly through
constraining the density dependence of the symmetry en-
ergy at nuclear saturation density n0, parameterized by
L = 3n0p0 where p0 is the pressure of pure neutron matter
at saturation density, which is strongly correlated with the
pressure in neutron stars at that density. Nuclear experimen-
tal probes (for a recent review see (Tsang et al. 2012)) give a
conservative range of L = 25�105 MeV, although some more
recent results on the nuclear experimental side (Lattimer
& Lim 2012), as well as tentative constraints from neutron
star observation (Newton & Li 2009; Gearheart et al. 2011;
Wen et al. 2012; Steiner & Gandolfi 2012) and from ab-initio
pure neutron matter calculations (Gezerlis & Carlson 2010;
Hebeler & Schwenk 2010; Gandolfi et al. 2012) favor the
lower half of that range (although, for a counter-example,
see e.g. (Sotani et al. 2012)). The high-density behavior of
the EOS is even more uncertain both theoretically and ex-
perimentally (Xiao et al. 2009; Russotto et al. 2011), even
if one restricts the composition to purely nucleonic matter,
with some of the only constraints coming from analysis of
heavy-ion collisions (Danielewicz et al. 2002) and the ob-
servation of a 1.97M� neutron star (Demorest et al. 2010).
In this paper we shall explore the impact of systematically
varying the density dependence of the symmetry energy L
at saturation density on the glitch model.

In Section 2 we describe our glitch modeling and series
of EOSs and how we compare with observational quantities.
In Section 3 we present and discuss our results and in Section
4 we discuss our conclusions.

2 THE GLITCH MODEL

The observed angular frequency, ⇥, of a pulsar is presumed
to be that of its ionic crustal lattice in which the magnetic
field lines are anchored. When considering glitch sizes and
immediate post-glitch evolution, it is important to define
that component of the star strongly coupled to the lattice
on timescales comparable with the glitch rise time, which is
observationally constrained to be ⇥ 40s (Dodson et al. 2002).
In our minimal model of the core which contains purely nu-
cleonic matter, this component contains the core protons
and some fraction of the core neutrons, and we shall refer
to it as the charged component of the star.

We will outline the glitch mechanism according to the
recently studied “snowplough” model, the first attempt at a
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we shall referred to as the charged component of the star),
�I/I � 1.6% ⇥ G (Link et al. 1999). Assuming the angular
momentum reservoir is the whole of the crustal neutron su-
perfluid �I = Icsf and the charged component it couples to
is essentially the whole star I = Itot, many realistic neutron
star (NS) equations of state (EoSs) can satisfy the condi-
tion �I/I � 1%, and indeed it can be used to constrain
the NS EoS (Lorenz et al. 1993; Link et al. 1999). However,
recent calculations of the strength of entrainment of con-
duction neutrons by the crustal lattice via Bragg scattering
suggest that the fraction of neutrons in the crust decoupled
from the charged component of the star and able to act as
the angular momentum reservoir is e⇤ectively �I ⇤ 0.2Icsf ,
making �I/I too small to explain the observed glitch sizes
at a first glance (Chamel 2012a,b; Andersson et al. 2012),
and thus suggesting one must go beyond the crust to find the
angular momentum reservoir. These studies assume a tight
coupling between crust and core so that I ⇤ Itot. However,
estimates of the crust-core coupling timescales due to inter-
actions of neutron vortices and type-I or type-II supercon-
ducting protons (Alpar & Sauls (1988); Sedrakian (2005);
Andersson et al. (2006); Jones (2006); Babaev (2009); Link
(2012)) do not preclude the possibility of only a small frac-
tion of the core neutrons being coupled to the crust at the
time of glitch, and in the latter case suggest that this is in
fact likely. Therefore it is possible that I ⌅ Itot, allowing
the ratio �I/I to satisfy the lower bound of 1.6% again with
only crustal superfluid neutrons involved.

Recently, a detailed model of such a scenario incorpo-
rating microscopic calculations of the pinning force through-
out the crust and a hydrodynamic evolution of the vor-
tices, was shown to explain qualitatively the Vela glitch
sizes and post-glitch rotational evolution and potentially
constrain the EOS (Haskell et al. 2012; Pizzochero 2011;
Seveso et al. 2012), despite remaining uncertainties in as-
pects of the glitch model such as the trigger mechanism
(Glampedakis & Andersson 2009; Warszawski et al. 2012)
and ignoring the entrainment of neutrons in the crust. In
this model the dynamics of the vortices are such that, on
timsescales of ⇤ 3yrs, crustal superfluid neutrons depin in
a front which moves radially outwards from the base of the
crust until it reaches densities at which the pinning force is a
maximum. At this point, the accumulated angular momen-
tum of the pinning front is transferred to the charged com-
ponent of the star suddenly, and the glitch occurs. Due to
the analogy of pushing snow slowly up a hill before releasing
it down the other side, it is referred to as the “snowplough”
model by the authors. One feature of the model is that the
vortices are pinned only in the region where they are totally
immersed in the crust, an equatorial ring which accounts for
⇤ 10% the mass of the whole crust, therefore reducing �I
by a factor of ⇤10. In this model, the crust-core coupling is
such that I ⌅ Itot, and so the ratio �I/I is still able to ac-
count for the observed Vela glitch activity for selected EoSs
(Seveso et al. 2012). In addition, it can also account for the
initial relative post-glitch acceleration of the crust inferred
from the 2000 Vela glitch timing data (Dodson et al. 2002).
With entrainment yet to be taken into account, however, it
remains an open question as to the e⌃cacy of the the model.

The aim of this paper is to examine the range of pre-
dictions for �I/I and for the initial post-glitch acceleration
within the framework of the “snowplough” model by varying

the most uncertain nuclear matter parameters over their ex-
perimentally and theoretically constrained ranges, and tak-
ing into account entrainment in a simple way akin to the
recent studies (Chamel 2012a; Andersson et al. 2012). To
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crust and core properties when exploring the dependence of
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here extends to modeling the crust thickness, density of su-
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Wen et al. 2012; Steiner & Gandolfi 2012) and from ab-initio
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lower half of that range (although, for a counter-example,
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varying the density dependence of the symmetry energy L
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In Section 2 we describe our glitch modeling and series
of EOSs and how we compare with observational quantities.
In Section 3 we present and discuss our results and in Section
4 we discuss our conclusions.

2 THE GLITCH MODEL

The observed angular frequency, ⇥, of a pulsar is presumed
to be that of its ionic crustal lattice in which the magnetic
field lines are anchored. When considering glitch sizes and
immediate post-glitch evolution, it is important to define
that component of the star strongly coupled to the lattice
on timescales comparable with the glitch rise time, which is
observationally constrained to be ⇥ 40s (Dodson et al. 2002).
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cleonic matter, this component contains the core protons
and some fraction of the core neutrons, and we shall refer
to it as the charged component of the star.
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recently studied “snowplough” model, the first attempt at a
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one may infer that only some fraction of the core neutron su-
perfluid will contribute to the charged component of the star
at the time of glitch. That fraction is quite uncertain, and
enters into the model as a free parameter Yg, but above es-
timates indicate that it is possible to have Yg ⌅ 1 (Haskell
et al. 2012; Link 2012). We also denote the total neutron
fraction of the core at a given radius r by Q(r). Then the
MoI of the charged component can be expressed (Seveso
et al. 2012)

Ic =
8⇤
3

⇤ R

0

r4[1�Q(r)(1�Ygl)]e
�⇥(r) ⇧̄(r)

⇥

("(r) + P (r))⌅
1� 2GM(r)/r

dr,

(5)
The total moment of inertia of superfluid neutrons in

the inner crust of the star is given by

I(tot)csf =
8⇤
3

⇤ Router

Rinner

r4e�⇥(r) ⇧̄(r)
⇥

("n(r) + Pn(r))⌅
1� 2GM(r)/r

dr (6)

where "n(r) is the energy density of crustal superfluid neu-
trons, Pn(r) is the pressure of the crustal superfluid neu-
trons and Rinner and Router are the radius boundaries for
the inner crust. In the model we consider, only the crustal
superfluid neutrons within the strong pinning region of the
crust, defined as the region within which vortices are totally
immersed in the inner crust, contribute to the glitch itself.
Defining

r2I =
8⇤
3
r4e�⇥(r) ⇧̄(r)

⇥

("n(r) + Pn(r))⌅
1� 2GM(r)/r

(7)

we can write the moment of inertia of the strong pinning
region of inner crust superfluid neutrons as

I(sp)csf =

⇤ ⇤/2

�outer

�⇤ R(�outer)

R(�)

r2Idr
⇥
sin ⇥d⇥ (8)

where R(⇥) is the distance from the core of the star to the
inner boundary of the strong pinning region at an angle ⇥ to
the rotation axis, R(⇥inner) ⇤ Rinner and R(⇥outer) ⇤ Router

(see Fig. 1).
Entrainment of superfluid neutrons by the crust’s lat-

tice reduces the mobility of the neutrons with respect to that
lattice. It can be shown that this e⇤ect is encoded by intro-
ducing an e⇤ective “mesoscopic” neutron mass m⇥

n (Chamel
2005; Chamel & Carter 2006; Chamel 2012b); larger val-
ues correspond to stronger coupling between the neutron
superfluid and the crust, and a reduction in the fraction of
superfluid neutrons able to store angular momentum for the
glitch event. One can include this e⇤ect by modifying the
integrand Eqn 7:

r2I ⇧ r2I⇥ =
mn

m⇥
n(r)

r2I (9)

where m⇥
n(r) is the e⇤ective mass at radius r in the crust. We

obtain m⇥
n(r) from the results of Chamel (Chamel 2012b)

by interpolating between the values calculated at specific
densities to find the e⇤ective mass at arbitrary locations in
the inner crust.

The work of Chamel (Chamel 2012b) ignores the spin-
orbit interaction, which the author notes might weaken the

entrainment e⇤ect. In order to account for this and other
uncertainties, we introduce a parameter e which we use to
control the strength of the entrainment:

m⇥
n ⇧ 1 + (m⇥

n � 1)e (10)

where e = 0 corresponds to no entrainment and e = 1 cor-
responds to full strength entrainment.

The analysis of (Link et al. 1999) identifies the mini-
mum amount of angular momentum stored in the crustal
superfluid reservoir Icsf relative to that of the charged com-
ponent of the star Ic with the parameter G defined

I(sp)csf

Ic
� ⇥̄

|⇥̇|
A ⇤ G (11)

where A is the glitch activity parameter of the pulsar, that
is the slope of the straight line fit to a plot of the cumulative
relative glitch size over time (Link et al. 1999). Currently for
the Vela pulsar, G = 0.016 (Espinoza et al. 2011).

In addition, the 2001 Vela glitch yielded the first mea-
surement of the relative angular acceleration of the charged
component just after the glitch K ⇤ �⇥̇gl/⇥̇0 = 18 ± 6
(Dodson et al. 2002). Assuming that this relative accelera-
tion is the result of the initial re-coupling of the remaining
uncoupled component of the core to the charged component
(i.e. the change in the e⇤ective moment of inertia of the star
acted upon by the magnetic torque), it can be calculated
within the model as (Pizzochero 2011)

�⇥̇gl

⇥̇0

=
(Itot � Ic)

Ic
⇤ K (12)

We shall confront our estimates of the MoI of the var-
ious components of the star with these two observed quan-
tities.

2.1 Nuclear matter parameters and crust and
core equations of state

The microphysical ingredients in the glitch model include
the total pressure and energy density P (nb), ⌃(nb) and those
of the superfluid neutrons Pn(nb), ⌃n(nb) as a function of
baryon density throughout the core and the crust, as well
as the crust-core transition baryon density ncc, the e⇤ective
mass of neutrons in the crust m⇥

n(r)..
In order to calculate the crust and core EOSs a model

for uniform nuclear matter is required. Nuclear matter mod-
els can be characterized by their behavior around nuclear
saturation density n0 = 0.16 fm�3, the density region from
which much of our experimental information is extracted.
We can denote the energy per particle of nuclear matter
around saturation density by E(n, �), where n is the baryon
density and � = 1 � 2x the isospin asymmetry, where x is
the proton fraction. x = 0.5, � = 0 corresponds to symmet-
ric nuclear matter (SNM), and x = 0, � = 1 to pure neutron
matter (PNM). By expanding E(n, x) about � = 0 we can
define the symmetry energy S(n),

E(n, �) = E0(⌅) + S(n)�2 + ..., (13)
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one may infer that only some fraction of the core neutron su-
perfluid will contribute to the charged component of the star
at the time of glitch. That fraction is quite uncertain, and
enters into the model as a free parameter Yg, but above es-
timates indicate that it is possible to have Yg ⌅ 1 (Haskell
et al. 2012; Link 2012). We also denote the total neutron
fraction of the core at a given radius r by Q(r). Then the
MoI of the charged component can be expressed (Seveso
et al. 2012)
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where "n(r) is the energy density of crustal superfluid neu-
trons, Pn(r) is the pressure of the crustal superfluid neu-
trons and Rinner and Router are the radius boundaries for
the inner crust. In the model we consider, only the crustal
superfluid neutrons within the strong pinning region of the
crust, defined as the region within which vortices are totally
immersed in the inner crust, contribute to the glitch itself.
Defining
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where R(⇥) is the distance from the core of the star to the
inner boundary of the strong pinning region at an angle ⇥ to
the rotation axis, R(⇥inner) ⇤ Rinner and R(⇥outer) ⇤ Router

(see Fig. 1).
Entrainment of superfluid neutrons by the crust’s lat-

tice reduces the mobility of the neutrons with respect to that
lattice. It can be shown that this e⇤ect is encoded by intro-
ducing an e⇤ective “mesoscopic” neutron mass m⇥

n (Chamel
2005; Chamel & Carter 2006; Chamel 2012b); larger val-
ues correspond to stronger coupling between the neutron
superfluid and the crust, and a reduction in the fraction of
superfluid neutrons able to store angular momentum for the
glitch event. One can include this e⇤ect by modifying the
integrand Eqn 7:

r2I ⇧ r2I⇥ =
mn
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n(r)

r2I (9)

where m⇥
n(r) is the e⇤ective mass at radius r in the crust. We

obtain m⇥
n(r) from the results of Chamel (Chamel 2012b)

by interpolating between the values calculated at specific
densities to find the e⇤ective mass at arbitrary locations in
the inner crust.

The work of Chamel (Chamel 2012b) ignores the spin-
orbit interaction, which the author notes might weaken the

entrainment e⇤ect. In order to account for this and other
uncertainties, we introduce a parameter e which we use to
control the strength of the entrainment:

m⇥
n ⇧ 1 + (m⇥

n � 1)e (10)

where e = 0 corresponds to no entrainment and e = 1 cor-
responds to full strength entrainment.

The analysis of (Link et al. 1999) identifies the mini-
mum amount of angular momentum stored in the crustal
superfluid reservoir Icsf relative to that of the charged com-
ponent of the star Ic with the parameter G defined

I(sp)csf

Ic
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where A is the glitch activity parameter of the pulsar, that
is the slope of the straight line fit to a plot of the cumulative
relative glitch size over time (Link et al. 1999). Currently for
the Vela pulsar, G = 0.016 (Espinoza et al. 2011).

In addition, the 2001 Vela glitch yielded the first mea-
surement of the relative angular acceleration of the charged
component just after the glitch K ⇤ �⇥̇gl/⇥̇0 = 18 ± 6
(Dodson et al. 2002). Assuming that this relative accelera-
tion is the result of the initial re-coupling of the remaining
uncoupled component of the core to the charged component
(i.e. the change in the e⇤ective moment of inertia of the star
acted upon by the magnetic torque), it can be calculated
within the model as (Pizzochero 2011)
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We shall confront our estimates of the MoI of the var-
ious components of the star with these two observed quan-
tities.

2.1 Nuclear matter parameters and crust and
core equations of state

The microphysical ingredients in the glitch model include
the total pressure and energy density P (nb), ⌃(nb) and those
of the superfluid neutrons Pn(nb), ⌃n(nb) as a function of
baryon density throughout the core and the crust, as well
as the crust-core transition baryon density ncc, the e⇤ective
mass of neutrons in the crust m⇥

n(r)..
In order to calculate the crust and core EOSs a model

for uniform nuclear matter is required. Nuclear matter mod-
els can be characterized by their behavior around nuclear
saturation density n0 = 0.16 fm�3, the density region from
which much of our experimental information is extracted.
We can denote the energy per particle of nuclear matter
around saturation density by E(n, �), where n is the baryon
density and � = 1 � 2x the isospin asymmetry, where x is
the proton fraction. x = 0.5, � = 0 corresponds to symmet-
ric nuclear matter (SNM), and x = 0, � = 1 to pure neutron
matter (PNM). By expanding E(n, x) about � = 0 we can
define the symmetry energy S(n),

E(n, �) = E0(⌅) + S(n)�2 + ..., (13)
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one may infer that only some fraction of the core neutron su-
perfluid will contribute to the charged component of the star
at the time of glitch. That fraction is quite uncertain, and
enters into the model as a free parameter Yg, but above es-
timates indicate that it is possible to have Yg ⌅ 1 (Haskell
et al. 2012; Link 2012). We also denote the total neutron
fraction of the core at a given radius r by Q(r). Then the
MoI of the charged component can be expressed (Seveso
et al. 2012)
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where R(⇥) is the distance from the core of the star to the
inner boundary of the strong pinning region at an angle ⇥ to
the rotation axis, R(⇥inner) ⇤ Rinner and R(⇥outer) ⇤ Router

(see Fig. 1).
Entrainment of superfluid neutrons by the crust’s lat-

tice reduces the mobility of the neutrons with respect to that
lattice. It can be shown that this e⇤ect is encoded by intro-
ducing an e⇤ective “mesoscopic” neutron mass m⇥

n (Chamel
2005; Chamel & Carter 2006; Chamel 2012b); larger val-
ues correspond to stronger coupling between the neutron
superfluid and the crust, and a reduction in the fraction of
superfluid neutrons able to store angular momentum for the
glitch event. One can include this e⇤ect by modifying the
integrand Eqn 7:
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by interpolating between the values calculated at specific
densities to find the e⇤ective mass at arbitrary locations in
the inner crust.
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orbit interaction, which the author notes might weaken the
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where A is the glitch activity parameter of the pulsar, that
is the slope of the straight line fit to a plot of the cumulative
relative glitch size over time (Link et al. 1999). Currently for
the Vela pulsar, G = 0.016 (Espinoza et al. 2011).

In addition, the 2001 Vela glitch yielded the first mea-
surement of the relative angular acceleration of the charged
component just after the glitch K ⇤ �⇥̇gl/⇥̇0 = 18 ± 6
(Dodson et al. 2002). Assuming that this relative accelera-
tion is the result of the initial re-coupling of the remaining
uncoupled component of the core to the charged component
(i.e. the change in the e⇤ective moment of inertia of the star
acted upon by the magnetic torque), it can be calculated
within the model as (Pizzochero 2011)
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We shall confront our estimates of the MoI of the var-
ious components of the star with these two observed quan-
tities.

2.1 Nuclear matter parameters and crust and
core equations of state

The microphysical ingredients in the glitch model include
the total pressure and energy density P (nb), ⌃(nb) and those
of the superfluid neutrons Pn(nb), ⌃n(nb) as a function of
baryon density throughout the core and the crust, as well
as the crust-core transition baryon density ncc, the e⇤ective
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In order to calculate the crust and core EOSs a model

for uniform nuclear matter is required. Nuclear matter mod-
els can be characterized by their behavior around nuclear
saturation density n0 = 0.16 fm�3, the density region from
which much of our experimental information is extracted.
We can denote the energy per particle of nuclear matter
around saturation density by E(n, �), where n is the baryon
density and � = 1 � 2x the isospin asymmetry, where x is
the proton fraction. x = 0.5, � = 0 corresponds to symmet-
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one may infer that only some fraction of the core neutron su-
perfluid will contribute to the charged component of the star
at the time of glitch. That fraction is quite uncertain, and
enters into the model as a free parameter Yg, but above es-
timates indicate that it is possible to have Yg ⌅ 1 (Haskell
et al. 2012; Link 2012). We also denote the total neutron
fraction of the core at a given radius r by Q(r). Then the
MoI of the charged component can be expressed (Seveso
et al. 2012)
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trons, Pn(r) is the pressure of the crustal superfluid neu-
trons and Rinner and Router are the radius boundaries for
the inner crust. In the model we consider, only the crustal
superfluid neutrons within the strong pinning region of the
crust, defined as the region within which vortices are totally
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where R(⇥) is the distance from the core of the star to the
inner boundary of the strong pinning region at an angle ⇥ to
the rotation axis, R(⇥inner) ⇤ Rinner and R(⇥outer) ⇤ Router

(see Fig. 1).
Entrainment of superfluid neutrons by the crust’s lat-

tice reduces the mobility of the neutrons with respect to that
lattice. It can be shown that this e⇤ect is encoded by intro-
ducing an e⇤ective “mesoscopic” neutron mass m⇥

n (Chamel
2005; Chamel & Carter 2006; Chamel 2012b); larger val-
ues correspond to stronger coupling between the neutron
superfluid and the crust, and a reduction in the fraction of
superfluid neutrons able to store angular momentum for the
glitch event. One can include this e⇤ect by modifying the
integrand Eqn 7:

r2I ⇧ r2I⇥ =
mn

m⇥
n(r)

r2I (9)

where m⇥
n(r) is the e⇤ective mass at radius r in the crust. We

obtain m⇥
n(r) from the results of Chamel (Chamel 2012b)

by interpolating between the values calculated at specific
densities to find the e⇤ective mass at arbitrary locations in
the inner crust.

The work of Chamel (Chamel 2012b) ignores the spin-
orbit interaction, which the author notes might weaken the

entrainment e⇤ect. In order to account for this and other
uncertainties, we introduce a parameter e which we use to
control the strength of the entrainment:

m⇥
n ⇧ 1 + (m⇥

n � 1)e (10)

where e = 0 corresponds to no entrainment and e = 1 cor-
responds to full strength entrainment.

The analysis of (Link et al. 1999) identifies the mini-
mum amount of angular momentum stored in the crustal
superfluid reservoir Icsf relative to that of the charged com-
ponent of the star Ic with the parameter G defined

I(sp)csf

Ic
� ⇥̄

|⇥̇|
A ⇤ G (11)

where A is the glitch activity parameter of the pulsar, that
is the slope of the straight line fit to a plot of the cumulative
relative glitch size over time (Link et al. 1999). Currently for
the Vela pulsar, G = 0.016 (Espinoza et al. 2011).

In addition, the 2001 Vela glitch yielded the first mea-
surement of the relative angular acceleration of the charged
component just after the glitch K ⇤ �⇥̇gl/⇥̇0 = 18 ± 6
(Dodson et al. 2002). Assuming that this relative accelera-
tion is the result of the initial re-coupling of the remaining
uncoupled component of the core to the charged component
(i.e. the change in the e⇤ective moment of inertia of the star
acted upon by the magnetic torque), it can be calculated
within the model as (Pizzochero 2011)

�⇥̇gl

⇥̇0

=
(Itot � Ic)

Ic
⇤ K (12)

We shall confront our estimates of the MoI of the var-
ious components of the star with these two observed quan-
tities.

2.1 Nuclear matter parameters and crust and
core equations of state

The microphysical ingredients in the glitch model include
the total pressure and energy density P (nb), ⌃(nb) and those
of the superfluid neutrons Pn(nb), ⌃n(nb) as a function of
baryon density throughout the core and the crust, as well
as the crust-core transition baryon density ncc, the e⇤ective
mass of neutrons in the crust m⇥

n(r)..
In order to calculate the crust and core EOSs a model

for uniform nuclear matter is required. Nuclear matter mod-
els can be characterized by their behavior around nuclear
saturation density n0 = 0.16 fm�3, the density region from
which much of our experimental information is extracted.
We can denote the energy per particle of nuclear matter
around saturation density by E(n, �), where n is the baryon
density and � = 1 � 2x the isospin asymmetry, where x is
the proton fraction. x = 0.5, � = 0 corresponds to symmet-
ric nuclear matter (SNM), and x = 0, � = 1 to pure neutron
matter (PNM). By expanding E(n, x) about � = 0 we can
define the symmetry energy S(n),

E(n, �) = E0(⌅) + S(n)�2 + ..., (13)
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one may infer that only some fraction of the core neutron su-
perfluid will contribute to the charged component of the star
at the time of glitch. That fraction is quite uncertain, and
enters into the model as a free parameter Yg, but above es-
timates indicate that it is possible to have Yg ⌅ 1 (Haskell
et al. 2012; Link 2012). We also denote the total neutron
fraction of the core at a given radius r by Q(r). Then the
MoI of the charged component can be expressed (Seveso
et al. 2012)

Ic =
8⇤
3

⇤ R

0

r4[1�Q(r)(1�Ygl)]e
�⇥(r) ⇧̄(r)

⇥

("(r) + P (r))⌅
1� 2GM(r)/r

dr,

(5)
The total moment of inertia of superfluid neutrons in

the inner crust of the star is given by
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dr (6)

where "n(r) is the energy density of crustal superfluid neu-
trons, Pn(r) is the pressure of the crustal superfluid neu-
trons and Rinner and Router are the radius boundaries for
the inner crust. In the model we consider, only the crustal
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crust, defined as the region within which vortices are totally
immersed in the inner crust, contribute to the glitch itself.
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we can write the moment of inertia of the strong pinning
region of inner crust superfluid neutrons as
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r2Idr
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sin ⇥d⇥ (8)

where R(⇥) is the distance from the core of the star to the
inner boundary of the strong pinning region at an angle ⇥ to
the rotation axis, R(⇥inner) ⇤ Rinner and R(⇥outer) ⇤ Router

(see Fig. 1).
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TABLE 1
Parameters for the Glitch Epoch

51,559.3190a

Parameter Value

n (Hz) . . . . . . . . . . . . . . . . . 11.194615396005
(Hz s!1) . . . . . . . . . . . . .ṅ !1.55615E!11
(Hz s!2) . . . . . . . . . . . . .n̈ 1.028E!21
(Hz) . . . . . . . . . . . . . .Dnp 3.45435(5)E!05
(Hz s!1) . . . . . . . . . .˙Dnp !1.0482(2)E!13

tn . . . . . . . . . . . . . . . . . . . . . . minutes1.2! 0.2
00.53(3) days
03.29(3) days
19.07(2) days

(#10!6 Hz) . . . . . .Dnn 0.020(5)
0.31(2)
0.193(2)
0.2362(2)

DM . . . . . . . . . . . . . . . . . . . 67.99
a The errors are the 1 j values. The data

fit is from MJD 51,505 to 51,650 (from 1999
November to 2000 April). Fig. 2.—Previously unobserved fast decay, with 10 s folds. The other decay

terms are removed, revealing the later start and decay of the fastest term.

Fig. 1.—Arrival time residuals from the preglitch model for both the three-frequency (left) and single-pulse (right) systems. The left panel has folds of 2 minutes,
and the right panel has folds of 10 s.

However, it should be noted that some investigators set the
permanent change terms, and , to zero. We have allowed˙ ¨Dn Dnp p

to take nonzero values, but we keep as zero. Both of˙ ¨Dn Dnp p
these terms affect only the longest timescales, where both tim-
ing noise and the occurrence of the subsequent glitches make
definitive separation impossible.
The data presented here were recorded between MJD 51,505

and 51,650. The arrival time data have been transformed to the
solar system barycenter using standard techniques. The position
and proper motion of the Vela pulsar were defined by data from
the radio VLBI position of Legge (2001). The recorded TOAs
from all frequencies and both systems were fitted in the pro-
gram TEMPO.1 The results of this fit are given in Table 1.
The left panel of Figure 1 shows the residuals from the

prejump fit for data taken on 2000 January 16 (MJD 51,559)
with the full polarization system. Shortly after 07:34 UT, the
residuals diverge from the fit, indicating a sudden decrease in
pulse period. The right panel of Figure 1 shows an hour of
data starting at MJD 51,559.3. Individual data points represent
10 s averages constructed from the single-pulse data. The period
jump occurs on a very short timescale, without warning. The
observations are consistent with an instantaneous change in
period; modeling has shown that a spin-up timescale of 40 s
would produce a 3 j signal.

1 See http://pulsar.princeton.edu/tempo (J. Taylor, R. Manchester, D. Nice,
J. Weisberg, A. Irwin, N. Wex, & E. Standish 1970).

The separation into four timescales is clear. The longer three
decay terms are similar to those previously reported (Alpar et
al. 1993; Flanagan 1990) and are in an approximately equal
ratio of 5.9 : 5.7. These have been associated with the vortex
creep models by Alpar et al. (1993) and others. The fast decay
timescale, not previously observed (or observable), is shown
separated from the other effects in Figure 2. We have subtracted
the terms found using TEMPO in the 2 minute data from the
single-pulse data folded for 10 s. In this plot, a gradual spin-
up (as opposed to an instantaneous one) would be a negative
excursion around the projected time of the glitch since we
would have overestimated the phase in the model. We see a
positive excursion, followed by a rapid decay. A positive ex-
cursion could be produced by the pulsar slowing down just
before the glitch or, more likely, if the estimate of the glitch
epoch was too early because there was an extra component not
resolvable in the 2 minute data. Once the original fit was re-
moved, this would give a linear rise with the gradient foundDn
in the 2 minutes data, followed by a decay. We have fitted this
rise ( ) followed by a fourth exponential decay term to giveDnDt
the true glitch epoch and the fastest decay term.

4. THE SINGLE-PULSE SYSTEM

Since the acceleration of the crust cannot be instantaneous,
it should be possible to observe the spin-up of the rotation
period of the pulsar. The parallel single-pulse system designed

Pulsar	  glitches:	  the	  observa4ons	  

Multifluid models of pulsar glitches
Brynmor Haskell 

(Flanagan 1996)

Vela Glitches

�(t) = �0 + �̇0t +
1
2
�̈0t

2 + ��p + ��̇pt +
�

i

��i exp (�t/⇥i)

(Dodson, McCulloch & Lewis, 2002)

Vela 2000 glitch

2000	  Vela	  glitch:	  Dodson,	  McCulloch,	  Lewis	  2002	  	  

Glitch	  rise	  4me	  tglitch	  <	  40s	  



Neutron	  star	  structure:	  1.4Msun	  

•  Effect	  of	  L:	  
•  Stellar	  radius:	  L	  increases,	  R	  increases	  

•  R	  increases,	  ΔR	  increases	  
•  Crust-‐core	  transi4on	  pressure:	  L	  increases,	  	  Pt	  decreases,	  ΔR	  decreases*	  	  
•  Core	  proton	  frac4on:	  L	  increases,	  xp	  increases	  
•  Effect	  on	  e,	  Yg?	  

*model	  dependent	  



Fixed	  crust-‐core	  transi4on	   Consistent	  crust-‐core	  transi4on	  

Neutron	  star	  structure:	  1.4Msun	  

c.f.	  FaBoyev,	  Piekarewicz	  2010	  
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Results	  

•  Simultaneously	  sa4sfy	  G	  and	  K	  
constraints	  only	  when	  entrainment	  is	  
weak:	  e=0	  –	  0.33	  
•  L	  <	  40	  MeV	  
•  Yg	  <	  0.03	  
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Results	  

•  Constraint	  on	  G	  alone	  sa4sfied	  for	  very	  
s4ff	  	  satura4on	  EOSs	  when	  e=1	  
•  L>100	  MeV	  
•  Yg≈	  0	  
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•  Weak	  entrainment:	  	  
•  sa4sfy	  G,	  K	  simultaneously	  for	  L<40	  MeV,	  Y	  <	  0.03	  

•  Full	  entrainment:	  	  
•  G,	  K	  can’t	  simultaneously	  be	  fit	  
•  G	  alone:	  	  L	  >	  100	  MeV,	  Yg≈	  0	  

•  Superfluid	  gaps!	  (density	  dependence)	  
•  Crust	  entrainment	  (e):	  dependence	  on	  (i)	  nuclear	  force	  (ii)	  presence	  of	  pasta	  
•  Core	  mutual	  fric4on	  (Yg);	  off-‐shell	  protons?	  
•  Pinning	  force	  strength	  in	  core?	  

Summary/Future	  Work	  

•  Pinning	  penetrates	  core	  up	  to	  0.05	  fm-‐3	  above	  ncc:	  
-‐  G	  sa4sfied	  for	  any	  L,	  Yg	  
-‐  G	  and	  K	  together	  sa4sfied	  for	  L	  <	  45	  MeV,	  Yg	  <	  0.05	  

Crust-‐driven	  glitches:	  

•  Only	  one	  observa4onal	  measurement	  of	  K	  
•  Interpreta4on	  of	  shortest	  4mescale	  rather	  uncertain	  (mutual	  fric4on	  driven,….)	  

Interpreta4on	  of	  observa4ons:	  caveats	  

Theore4cal	  uncertain4es	  

Pinning	  in	  core?	  
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Conclusions/Future	  Direc4ons	  

•  More	  accurate	  treatment	  of	  the	  crust-‐core	  transi4on	  using	  3D	  Hartree-‐Fock	  method	  

•  In	  progress:	  accurate	  evalua4on	  of	  shear	  modulus	  of	  inner	  crust	  including	  pasta	  layers	  
(plots	  and	  calcula4ons	  by	  Nathan	  Johnson-‐McDaniel)	  



THE	  STARQUAKE	  MODEL...	  AND	  WHY	  IT	  DOESN’T	  WORK	  

• 	  Vela	  pulsar:	  ΔΩ	  /Ω	  ≈	  10–	  6	  	  >	  ~	  1cm	  ship	  in	  crust	  surface	  

BUT:	  Ini4al	  ellip4city	  <	  10-‐6;	  	  a	  single	  Vela	  glitch	  would	  relax	  the	  crust	  to	  a	  spherical	  shape!	  
	  
Starquakes	  cannot	  be	  the	  cause	  of	  Vela	  glitches	  

• 	  Crab	  pulsar:	  ΔΩ	  /Ω	  ≈	  10–	  9	  	  >	  ~	  0.01mm	  ship	  in	  crust	  surface	  
	  
Ac4vity	  parameter?	  



THE	  STARQUAKE	  MODEL...	  AND	  WHY	  IT	  DOESN’T	  WORK	  

• 	  Depending	  on	  the	  pressure	  of	  neutrons	  and	  the	  mechanical	  proper4es	  of	  pasta,	  and	  
	  	  	  mass	  of	  star,	  the	  starquake	  ac4vity	  parameter	  varies	  by	  3	  orders	  magnitude…	  
• 	  BUT	  is	  always	  at	  least	  three	  orders	  of	  magnitude	  less	  than	  the	  Crab	  

-‐	  The	  crust	  cannot	  store	  enough	  mechanical	  energy	  to	  power	  glitches	  
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nucleon interactions as they are manifested in a many-nucleon context. A useful concept
that bridges the gap between ab initio nucleon-nucleon calculations, nuclear experimental
observables, and neutron star matter is that of uniform nuclear matter (NM). This is an
idealized system, homogeneous and infinite in extent, of neutrons and protons interacting
solely via the strong force. The energy per particle of such a system at a density ⇥ and
proton fraction x, E(⇥, x), is referred to as the nuclear matter equation of state (NM EOS).
In the regions of the neutron star core where protons and neutrons exist, the NM EOS
can be combined with the electron energy, and under conditions of charge neutrality and
beta-equilibrium gives an EOS for the core. In the inner crust, the NM EOS can be used
to describe the dripped neutrons (x = 0) and the bulk matter in the nuclear clusters. A
consistent model for the EOS of crust and core necessarily uses a unique NM EOS, and one
should expect parameters characteristic of a given NM EOS to correlate with both crust and
core properties.

Nuclear matter with equal numbers of neutrons and protons (x = 0.5) is referred to as
symmetric nuclear matter (SNM); nuclear matter with x = 0.0 is naturally referred to as
pure neutron matter (PNM). Nuclei on Earth contain closely symmetric nuclear matter at
densities close to nuclear saturation density ⇥0 ⇧ 2.7 ⇥ 1014 g cm�3 ⇤ 0.16 fm�3 = n0,
where we use n to refer to baryon number density. Thus experiment has constrained the
properties of E(⌅ n0,⌅ 0.5) to within relatively tight ranges, but the properties of PNM
remain uncertain from an experimental standpoint. In the past decade, much experimen-
tal activity has been devoted to extending our knowledge of nuclear interactions to more
neutron-rich systems and to higher and lower densities. Although we cannot produce pure
neutron matter in the laboratory, we can produce matter with proton fractions as low as
x ⇧ 0.3 in certain neutron rich isotopes and in the products of heavy ion collisions. This
allows us to obtain information on how E(⌅ n0, x) changes as x decreases.

By expanding E(n, x) about x = 0.5 using the isospin asymmetry variable � = 1�2x,
we can define a useful quantity called the symmetry energy S(n),

E(n, �) = E0(n) + S(n)�2 + ...; S(n) =
1

2

⌥2E(n, �)

⌥�2

����
�=0

, (1)

which encodes the change in the energy per particle of NM as one moves away from isospin
symmetry. This allows extrapolation to the highly isospin asymmetric conditions in neutron
stars. The simplest such extrapolation, referred to as the parabolic approximation (PA),
truncates the expansion to second order, giving

EPNM(n) ⇤ E(n, � = 1) ⇧ E0(n) + S(n) (2)

for the PNM EOS. Expanding the symmetry energy about ⇤ = 0 where ⇤ = n�n0
3n0

we
obtain

S(n) = J + L⇤+ 1
2Ksym⇤

2 + ..., (3)

where J , L and Ksym are the symmetry energy, its slope and its curvature at saturation
density.

Since neutron star matter contains a low fraction of protons, many inner crust and global
stellar properties are sensitive to the symmetry energy parameters J ,L, etc. To give a sim-
ple example, the pressure of PNM at saturation density is given by PPNM(n0)=n0L/3. The

n	  –	  baryon	  number	  density	  
x	  –	  proton	  frac4on	  
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nucleon interactions as they are manifested in a many-nucleon context. A useful concept
that bridges the gap between ab initio nucleon-nucleon calculations, nuclear experimental
observables, and neutron star matter is that of uniform nuclear matter (NM). This is an
idealized system, homogeneous and infinite in extent, of neutrons and protons interacting
solely via the strong force. The energy per particle of such a system at a density ⇥ and
proton fraction x, E(⇥, x), is referred to as the nuclear matter equation of state (NM EOS).
In the regions of the neutron star core where protons and neutrons exist, the NM EOS
can be combined with the electron energy, and under conditions of charge neutrality and
beta-equilibrium gives an EOS for the core. In the inner crust, the NM EOS can be used
to describe the dripped neutrons (x = 0) and the bulk matter in the nuclear clusters. A
consistent model for the EOS of crust and core necessarily uses a unique NM EOS, and one
should expect parameters characteristic of a given NM EOS to correlate with both crust and
core properties.

Nuclear matter with equal numbers of neutrons and protons (x = 0.5) is referred to as
symmetric nuclear matter (SNM); nuclear matter with x = 0.0 is naturally referred to as
pure neutron matter (PNM). Nuclei on Earth contain closely symmetric nuclear matter at
densities close to nuclear saturation density ⇥0 ⇧ 2.7 ⇥ 1014 g cm�3 ⇤ 0.16 fm�3 = n0,
where we use n to refer to baryon number density. Thus experiment has constrained the
properties of E(⌅ n0,⌅ 0.5) to within relatively tight ranges, but the properties of PNM
remain uncertain from an experimental standpoint. In the past decade, much experimen-
tal activity has been devoted to extending our knowledge of nuclear interactions to more
neutron-rich systems and to higher and lower densities. Although we cannot produce pure
neutron matter in the laboratory, we can produce matter with proton fractions as low as
x ⇧ 0.3 in certain neutron rich isotopes and in the products of heavy ion collisions. This
allows us to obtain information on how E(⌅ n0, x) changes as x decreases.

By expanding E(n, x) about x = 0.5 using the isospin asymmetry variable � = 1�2x,
we can define a useful quantity called the symmetry energy S(n),

E(n, �) = E0(n) + S(n)�2 + ...; S(n) =
1

2

⌥2E(n, �)

⌥�2

����
�=0

, (1)

which encodes the change in the energy per particle of NM as one moves away from isospin
symmetry. This allows extrapolation to the highly isospin asymmetric conditions in neutron
stars. The simplest such extrapolation, referred to as the parabolic approximation (PA),
truncates the expansion to second order, giving

EPNM(n) ⇤ E(n, � = 1) ⇧ E0(n) + S(n) (2)

for the PNM EOS. Expanding the symmetry energy about ⇤ = 0 where ⇤ = n�n0
3n0

we
obtain

S(n) = J + L⇤+ 1
2Ksym⇤

2 + ..., (3)

where J , L and Ksym are the symmetry energy, its slope and its curvature at saturation
density.

Since neutron star matter contains a low fraction of protons, many inner crust and global
stellar properties are sensitive to the symmetry energy parameters J ,L, etc. To give a sim-
ple example, the pressure of PNM at saturation density is given by PPNM(n0)=n0L/3. The

n	  –	  baryon	  number	  density	  
x	  –	  proton	  frac4on	  

S(n)	  
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III. THE EQUATION OF STATE OF UNIFORM NUCLEAR MATTER

Useful parameters characterizing the EoS of isospin asymmetric nuclear matter around

SNM (proton fraction x = 0.5; � = 0) and the saturation density of SNM ns can be derived

by expanding E(n, x) in a power series in the isospin asymmetry � = 1� 2x and the density

parameter ⇥ = n�n0
3n0

E(n, x) = E0(n) + S(n)�2 + ... (9)

E0(n) = E0 +
1
2K0⇥

2 + ... (10)

S(n) = J + L⇥+ 1
2Ksym⇥

2 + ... (11)

EPNM(n) ⇥ E0(n) + S(n) (12)

E0(n) = E(n, 0.5) is the binding energy per nucleon of SNM and S(n) = 1
2⌃

2E(n, x)/⌃�2x=0.5

is the nuclear symmetry energy. K0 is the incompressibility of SNM at saturation density.

J = S(n0), L = ⌃S(n)/⌃⇥|n=n0 and Ksym are the value of the symmetry energy, its slope

and its curvature at saturation density. In particular, the pressure of pure neutron matter at

sub-saturation densities, which plays a large role in determining the equilibrium composition

of the crust, can be expressed as

PPNM =
n2

3n0
[L+ (K0 +Ksym)⇥+ ...]. (13)

to the leading two orders.

Throughout most of this paper we will mainly use the modified Skyrme-like (MSL) pa-

rameterization of the nuclear matter EoS E(n, �) [59] (see appendix A) as our description

of uniform nuclear matter as a function of density and isospin asymmetry. The MSL model

has the same number of free parameters as the Skyrme description of uniform nuclear mat-

ter; the di�erence is that the MSL parameters can be analytically related to the properties

of uniform nuclear matter at saturation density, allowing a smooth variation of, e.g., the

symmetry energy at saturation J and its slope L, while holding fixed the isospin symmetric

part of the EoS. For comparison, we will also use a similar phenomenological EoS whose

form was originally written down by Bludman and Dover [60] (which we will refer to as BD,

see also appendix A), which was later modified and used to study finite nuclei and inner

crust composition by Oyamatsu and Iida (OI) [10, 61], and a selection of Skyrme EoSs [62]

whose basic properties are given in Table 1. The BD model has two fewer free parameters
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nucleon interactions as they are manifested in a many-nucleon context. A useful concept
that bridges the gap between ab initio nucleon-nucleon calculations, nuclear experimental
observables, and neutron star matter is that of uniform nuclear matter (NM). This is an
idealized system, homogeneous and infinite in extent, of neutrons and protons interacting
solely via the strong force. The energy per particle of such a system at a density ⇥ and
proton fraction x, E(⇥, x), is referred to as the nuclear matter equation of state (NM EOS).
In the regions of the neutron star core where protons and neutrons exist, the NM EOS
can be combined with the electron energy, and under conditions of charge neutrality and
beta-equilibrium gives an EOS for the core. In the inner crust, the NM EOS can be used
to describe the dripped neutrons (x = 0) and the bulk matter in the nuclear clusters. A
consistent model for the EOS of crust and core necessarily uses a unique NM EOS, and one
should expect parameters characteristic of a given NM EOS to correlate with both crust and
core properties.

Nuclear matter with equal numbers of neutrons and protons (x = 0.5) is referred to as
symmetric nuclear matter (SNM); nuclear matter with x = 0.0 is naturally referred to as
pure neutron matter (PNM). Nuclei on Earth contain closely symmetric nuclear matter at
densities close to nuclear saturation density ⇥0 ⇧ 2.7 ⇥ 1014 g cm�3 ⇤ 0.16 fm�3 = n0,
where we use n to refer to baryon number density. Thus experiment has constrained the
properties of E(⌅ n0,⌅ 0.5) to within relatively tight ranges, but the properties of PNM
remain uncertain from an experimental standpoint. In the past decade, much experimen-
tal activity has been devoted to extending our knowledge of nuclear interactions to more
neutron-rich systems and to higher and lower densities. Although we cannot produce pure
neutron matter in the laboratory, we can produce matter with proton fractions as low as
x ⇧ 0.3 in certain neutron rich isotopes and in the products of heavy ion collisions. This
allows us to obtain information on how E(⌅ n0, x) changes as x decreases.

By expanding E(n, x) about x = 0.5 using the isospin asymmetry variable � = 1�2x,
we can define a useful quantity called the symmetry energy S(n),

E(n, �) = E0(n) + S(n)�2 + ...; S(n) =
1

2

⌥2E(n, �)

⌥�2

����
�=0

, (1)

which encodes the change in the energy per particle of NM as one moves away from isospin
symmetry. This allows extrapolation to the highly isospin asymmetric conditions in neutron
stars. The simplest such extrapolation, referred to as the parabolic approximation (PA),
truncates the expansion to second order, giving

EPNM(n) ⇤ E(n, � = 1) ⇧ E0(n) + S(n) (2)

for the PNM EOS. Expanding the symmetry energy about ⇤ = 0 where ⇤ = n�n0
3n0

we
obtain

S(n) = J + L⇤+ 1
2Ksym⇤

2 + ..., (3)

where J , L and Ksym are the symmetry energy, its slope and its curvature at saturation
density.

Since neutron star matter contains a low fraction of protons, many inner crust and global
stellar properties are sensitive to the symmetry energy parameters J ,L, etc. To give a sim-
ple example, the pressure of PNM at saturation density is given by PPNM(n0)=n0L/3. The

K(α) = K0 + Kasyα
2 (2.12)

where K0 is the incompressibility of symmetric nuclear matter at the nuclear matter saturation
density ρ0. TheKasy in the isospin-dependent part [42]

Kasy ≈ Ksym − 6L (2.13)

characterizes the density dependence of the nuclear symmetry energy. In principle, the infor-
mation on Kasy can be extracted experimentally by measuring the giant monopole resonance
(GMR) of neutron-rich nuclei. Earlier attempts to extract the value of Kasy from experimental
GMR data resulted in widely different values. For example, a value of Kasy = −320 ± 180
MeV was obtained in Ref. [228] from a study of the systematics of GMR in the isotopic chains
of Sn and Sm while the K0 was found to be 300 ± 25 MeV, in contrast with the commonly
accepted value of 230 ± 10 MeV. A subsequent systematic study of the GMR of finite nuclei
leads to a constraint of −566 ± 1350 < Kasy < 139 ± 1617 MeV, depending on the mass
region of nuclei and the number of parameters used in parameterizing the incompressibility of
finite nuclei [229]. The large uncertainties in the extracted Kasy thus does not allow one to dis-
tinguish the different nuclear symmetry energies from theoretical models. Very recently, from
measurements of the isotopic dependence of GMR in the even-A Sn isotopes a more stringent
value ofKasy = −550±100MeV was obtained in Ref. [230]. This result is consistent with that
extracted from the analysis of the isospin diffusion data [56,71].

Fig. 8. (Color online) Left window: Density dependence of the nuclear symmetry energy Esym(ρ) from
SHFwith 21 sets of Skyrme interaction parameters [71]. Right window: Same as left panel from the RMF
model for the parameter sets NL1, NL2, NL3, NL-SH, TM1, PK1, FSU-Gold, HA, NLρ, and NLρδ in the
nonlinear RMF model (solid curves); TW99, DD-ME1, DD-ME2, PKDD, DD, DD-F, and DDRH-corr
in the density-dependent RMF model (dashed curves); and PC-F1, PC-F2, PC-F3, PC-F4, PC-LA, and
FKVW in the point-coupling RMF model (dotted curves) [211].

The symmetry energies at normal nuclear matter density from various theoretical models are
usually tuned to that determined from the empirical liquid-dropmass formula, which has a value
of Esym(ρ0) around 30 MeV [8,9]. For example, in the non-relativistic SHF approach [72], the
predicted values forEsym(ρ0) are between 26 and 35MeV depending on the nuclear interactions
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for the MSL EOS are displayed in the right panel of Fig. 3. Doing so naturally introduces
correlation between J and L; in the right panel of Fig. 2 we display the correlation obtained
in this way for the MSL model. It is fit by J = 20.53 + 0.207L. For reference, the correla-
tions obtained directly from the PNM calculations of HS and GCR, using the PA (Eq. (2))
with E0 = �16 MeV to obtain J from EPNM(n0), are depicted in Fig. 3; although offset
slightly from the MSL results, their slopes are similar. A similar correlation is obtained
from the Hugenholtz-Van-Hove (HVH) theorem which predicts a relation between J and L
whose uncertainty can be related to global nucleon optical potentials [63]

One experimental probe of the symmetry energy is the measurement of neutron skins
of nuclei. This probes the symmetry energy at densities around n = 0.1fm�3; thus many
models fix the symmetry energy at this density. In the right panel of Fig. 3 we show the
MSL PNM EOSs constrained by S(0.1fm�3) = 26 MeV; varying L then produces a steeper
correlation with J , also shown in the right panel of Fig. 2; J = 29.0 + 0.1L. It is worth
noting that increasing the density at which one fixes the symmetry energy in a given model,
increases the slope in the J-L plane.

Similar correlations are obtained from two relativistic mean field models [70, 71] and
from a best fit to a wide selection of model predictions of J and L [72], also shown in the
left panel of Fig. 2. Finally we also show correlations that emerge from nuclear mass fits
[64, 65] and analysis of data from heavy ion collisions [53].

In what follows we shall use sequences of MSL EOSs generated by varying L with a
variety of constraints on J : the sequence generated keeping J fixed will be labelled, e.g.,
‘J35’; the sequence generated by fixing the low density PNM EOS will be labelled the
‘PNM’ sequence; and the sequence generated by fixing S(0.1fm�3) = 26 MeV will be
labelled the ‘S0.1’ sequence. The model correlations in the right panel of Fig. 2 overlap in
the region 25<L<70 MeV, in line with the most recent experimental results. By combining
the MSL ‘PNM’ constraint with the requirement that 25<J<35 MeV and L>25MeV we
obtain a region in the J-L plane which we shall refer to as our ‘baseline’ region.

2.3. Correlations with neutron star properties

Some useful correlations of symmetry energy parameters with basic neutron star properties
have been established, which we review here; more details can be found in the following
references: [11, 70, 72, 80, 81]

• The pressure of neutron star matter in beta-equilibrium at n0 including the electron
contribution can be approximated [11, 81]

PNS(n0) ⇤
n0

3
L+ 0.048n0

�
J

30

⇥3�
J � 4

3
L

⇥
, (7)

where the second term provides a correction of only 2-3% for L = 25 MeV, rising to 10-
20% for L = 115 MeV, with J over the range 25 - 35 MeV. At densities slightly above or
below this, extra terms are introduced, but the leading order will remain the one proportional
to L alone.
• The radius of a neutron star is found to correlate with the pressure at a fiducial density

If, say, we take the reference density to be n = 0.1fm�3, (with n0 = 0.16fm�3), then ⇥ref = �0.125; then

S (nref) = M �
L(0.125 � 0.023 + 0.0059 � 0.00165 + . . .) +
L2

M
(0.0078 � 0.0029 + 0.001 � . . .) +

L3

M2 (0.00033 � 0.00003 + . . .) +

L4

M3 (0.00001 � . . .) +
. . .

xNS(n0) ⇥ 1
3�2n0

�4J
~c

⇥3
(15)
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one may infer that only some fraction of the core neutron su-
perfluid will contribute to the charged component of the star
at the time of glitch. That fraction is quite uncertain, and
enters into the model as a free parameter Yg, but above es-
timates indicate that it is possible to have Yg ⌅ 1 (Haskell
et al. 2012; Link 2012). We also denote the total neutron
fraction of the core at a given radius r by Q(r). Then the
MoI of the charged component can be expressed (Seveso
et al. 2012)

Ic =
8⇤
3

⇤ R

0

r4[1�Q(r)(1�Ygl)]e
�⇥(r) ⇧̄(r)

⇥

("(r) + P (r))⌅
1� 2GM(r)/r

dr,

(5)
The total moment of inertia of superfluid neutrons in

the inner crust of the star is given by

I(tot)csf =
8⇤
3

⇤ Router

Rinner

r4e�⇥(r) ⇧̄(r)
⇥

("n(r) + Pn(r))⌅
1� 2GM(r)/r

dr (6)

where "n(r) is the energy density of crustal superfluid neu-
trons, Pn(r) is the pressure of the crustal superfluid neu-
trons and Rinner and Router are the radius boundaries for
the inner crust. In the model we consider, only the crustal
superfluid neutrons within the strong pinning region of the
crust, defined as the region within which vortices are totally
immersed in the inner crust, contribute to the glitch itself.
Defining

r2I =
8⇤
3
r4e�⇥(r) ⇧̄(r)

⇥

("n(r) + Pn(r))⌅
1� 2GM(r)/r

(7)

we can write the moment of inertia of the strong pinning
region of inner crust superfluid neutrons as

I(sp)csf =

⇤ ⇤/2

�outer

�⇤ R(�outer)

R(�)

r2Idr
⇥
sin ⇥d⇥ (8)

where R(⇥) is the distance from the core of the star to the
inner boundary of the strong pinning region at an angle ⇥ to
the rotation axis, R(⇥inner) ⇤ Rinner and R(⇥outer) ⇤ Router

(see Fig. 1).
Entrainment of superfluid neutrons by the crust’s lat-

tice reduces the mobility of the neutrons with respect to that
lattice. It can be shown that this e⇤ect is encoded by intro-
ducing an e⇤ective “mesoscopic” neutron mass m⇥

n (Chamel
2005; Chamel & Carter 2006; Chamel 2012b); larger val-
ues correspond to stronger coupling between the neutron
superfluid and the crust, and a reduction in the fraction of
superfluid neutrons able to store angular momentum for the
glitch event. One can include this e⇤ect by modifying the
integrand Eqn 7:

r2I ⇧ r2I⇥ =
mn

m⇥
n(r)

r2I (9)

where m⇥
n(r) is the e⇤ective mass at radius r in the crust. We

obtain m⇥
n(r) from the results of Chamel (Chamel 2012b)

by interpolating between the values calculated at specific
densities to find the e⇤ective mass at arbitrary locations in
the inner crust.

The work of Chamel (Chamel 2012b) ignores the spin-
orbit interaction, which the author notes might weaken the

entrainment e⇤ect. In order to account for this and other
uncertainties, we introduce a parameter e which we use to
control the strength of the entrainment:

m⇥
n ⇧ 1 + (m⇥

n � 1)e (10)

where e = 0 corresponds to no entrainment and e = 1 cor-
responds to full strength entrainment.

The analysis of (Link et al. 1999) identifies the mini-
mum amount of angular momentum stored in the crustal
superfluid reservoir Icsf relative to that of the charged com-
ponent of the star Ic with the parameter G defined

I(sp)csf

Ic
� ⇥̄

|⇥̇|
A ⇤ G (11)

where A is the glitch activity parameter of the pulsar, that
is the slope of the straight line fit to a plot of the cumulative
relative glitch size over time (Link et al. 1999). Currently for
the Vela pulsar, G = 0.016 (Espinoza et al. 2011).

In addition, the 2001 Vela glitch yielded the first mea-
surement of the relative angular acceleration of the charged
component just after the glitch K ⇤ �⇥̇gl/⇥̇0 = 18 ± 6
(Dodson et al. 2002). Assuming that this relative accelera-
tion is the result of the initial re-coupling of the remaining
uncoupled component of the core to the charged component
(i.e. the change in the e⇤ective moment of inertia of the star
acted upon by the magnetic torque), it can be calculated
within the model as (Pizzochero 2011)

�⇥̇gl

⇥̇0

=
(Itot � Ic)

Ic
⇤ K (12)

We shall confront our estimates of the MoI of the var-
ious components of the star with these two observed quan-
tities.

2.1 Nuclear matter parameters and crust and
core equations of state

The microphysical ingredients in the glitch model include
the total pressure and energy density P (nb), ⌃(nb) and those
of the superfluid neutrons Pn(nb), ⌃n(nb) as a function of
baryon density throughout the core and the crust, as well
as the crust-core transition baryon density ncc, the e⇤ective
mass of neutrons in the crust m⇥

n(r)..
In order to calculate the crust and core EOSs a model

for uniform nuclear matter is required. Nuclear matter mod-
els can be characterized by their behavior around nuclear
saturation density n0 = 0.16 fm�3, the density region from
which much of our experimental information is extracted.
We can denote the energy per particle of nuclear matter
around saturation density by E(n, �), where n is the baryon
density and � = 1 � 2x the isospin asymmetry, where x is
the proton fraction. x = 0.5, � = 0 corresponds to symmet-
ric nuclear matter (SNM), and x = 0, � = 1 to pure neutron
matter (PNM). By expanding E(n, x) about � = 0 we can
define the symmetry energy S(n),

E(n, �) = E0(⌅) + S(n)�2 + ..., (13)
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where R(⇥) is the distance from the core of the star to the
inner boundary of the strong pinning region at an angle ⇥ to
the rotation axis, R(⇥inner) ⇤ Rinner and R(⇥outer) ⇤ Router

(see Fig. 1).
Entrainment of superfluid neutrons by the crust’s lat-

tice reduces the mobility of the neutrons with respect to that
lattice. It can be shown that this e⇤ect is encoded by intro-
ducing an e⇤ective “mesoscopic” neutron mass m⇥

n (Chamel
2005; Chamel & Carter 2006; Chamel 2012b); larger val-
ues correspond to stronger coupling between the neutron
superfluid and the crust, and a reduction in the fraction of
superfluid neutrons able to store angular momentum for the
glitch event. One can include this e⇤ect by modifying the
integrand Eqn 7:

r2I ⇧ r2I⇥ =
mn
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n(r)

r2I (9)

where m⇥
n(r) is the e⇤ective mass at radius r in the crust. We

obtain m⇥
n(r) from the results of Chamel (Chamel 2012b)

by interpolating between the values calculated at specific
densities to find the e⇤ective mass at arbitrary locations in
the inner crust.

The work of Chamel (Chamel 2012b) ignores the spin-
orbit interaction, which the author notes might weaken the

entrainment e⇤ect. In order to account for this and other
uncertainties, we introduce a parameter e which we use to
control the strength of the entrainment:
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n ⇧ 1 + (m⇥

n � 1)e (10)

where e = 0 corresponds to no entrainment and e = 1 cor-
responds to full strength entrainment.

The analysis of (Link et al. 1999) identifies the mini-
mum amount of angular momentum stored in the crustal
superfluid reservoir Icsf relative to that of the charged com-
ponent of the star Ic with the parameter G defined

I(sp)csf

Ic
� ⇥̄

|⇥̇|
A ⇤ G (11)

where A is the glitch activity parameter of the pulsar, that
is the slope of the straight line fit to a plot of the cumulative
relative glitch size over time (Link et al. 1999). Currently for
the Vela pulsar, G = 0.016 (Espinoza et al. 2011).

In addition, the 2001 Vela glitch yielded the first mea-
surement of the relative angular acceleration of the charged
component just after the glitch K ⇤ �⇥̇gl/⇥̇0 = 18 ± 6
(Dodson et al. 2002). Assuming that this relative accelera-
tion is the result of the initial re-coupling of the remaining
uncoupled component of the core to the charged component
(i.e. the change in the e⇤ective moment of inertia of the star
acted upon by the magnetic torque), it can be calculated
within the model as (Pizzochero 2011)

�⇥̇gl

⇥̇0

=
(Itot � Ic)

Ic
⇤ K (12)

We shall confront our estimates of the MoI of the var-
ious components of the star with these two observed quan-
tities.

2.1 Nuclear matter parameters and crust and
core equations of state

The microphysical ingredients in the glitch model include
the total pressure and energy density P (nb), ⌃(nb) and those
of the superfluid neutrons Pn(nb), ⌃n(nb) as a function of
baryon density throughout the core and the crust, as well
as the crust-core transition baryon density ncc, the e⇤ective
mass of neutrons in the crust m⇥

n(r)..
In order to calculate the crust and core EOSs a model

for uniform nuclear matter is required. Nuclear matter mod-
els can be characterized by their behavior around nuclear
saturation density n0 = 0.16 fm�3, the density region from
which much of our experimental information is extracted.
We can denote the energy per particle of nuclear matter
around saturation density by E(n, �), where n is the baryon
density and � = 1 � 2x the isospin asymmetry, where x is
the proton fraction. x = 0.5, � = 0 corresponds to symmet-
ric nuclear matter (SNM), and x = 0, � = 1 to pure neutron
matter (PNM). By expanding E(n, x) about � = 0 we can
define the symmetry energy S(n),

E(n, �) = E0(⌅) + S(n)�2 + ..., (13)
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Model	  parameters:	  
•  Entrainment	  strength	  e	  (Chamel	  PRC	  85	  	  
(2012))	  
•  Frac4on	  of	  core	  neutrons	  coupled	  to	  crust	  
Yg	  when	  glitch	  happens	  	  
•  Symmetry	  energy	  slope	  at	  satura4on	  L	  

•  Can	  enough	  angular	  momentum	  be	  stored	  by	  inner	  crust	  neutrons	  to	  account	  for	  Vela	  	  
glitches?	  i.e.	  is	  Icsf(sp)/Ic	  large	  enough?	  

(Link,	  Epstein,	  Lakmer;	  PRL83	  1999)	  
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we shall referred to as the charged component of the star),
�I/I � 1.6% ⇥ G (Link et al. 1999). Assuming the angular
momentum reservoir is the whole of the crustal neutron su-
perfluid �I = Icsf and the charged component it couples to
is essentially the whole star I = Itot, many realistic neutron
star (NS) equations of state (EoSs) can satisfy the condi-
tion �I/I � 1%, and indeed it can be used to constrain
the NS EoS (Lorenz et al. 1993; Link et al. 1999). However,
recent calculations of the strength of entrainment of con-
duction neutrons by the crustal lattice via Bragg scattering
suggest that the fraction of neutrons in the crust decoupled
from the charged component of the star and able to act as
the angular momentum reservoir is e⇤ectively �I ⇤ 0.2Icsf ,
making �I/I too small to explain the observed glitch sizes
at a first glance (Chamel 2012a,b; Andersson et al. 2012),
and thus suggesting one must go beyond the crust to find the
angular momentum reservoir. These studies assume a tight
coupling between crust and core so that I ⇤ Itot. However,
estimates of the crust-core coupling timescales due to inter-
actions of neutron vortices and type-I or type-II supercon-
ducting protons (Alpar & Sauls (1988); Sedrakian (2005);
Andersson et al. (2006); Jones (2006); Babaev (2009); Link
(2012)) do not preclude the possibility of only a small frac-
tion of the core neutrons being coupled to the crust at the
time of glitch, and in the latter case suggest that this is in
fact likely. Therefore it is possible that I ⌅ Itot, allowing
the ratio �I/I to satisfy the lower bound of 1.6% again with
only crustal superfluid neutrons involved.

Recently, a detailed model of such a scenario incorpo-
rating microscopic calculations of the pinning force through-
out the crust and a hydrodynamic evolution of the vor-
tices, was shown to explain qualitatively the Vela glitch
sizes and post-glitch rotational evolution and potentially
constrain the EOS (Haskell et al. 2012; Pizzochero 2011;
Seveso et al. 2012), despite remaining uncertainties in as-
pects of the glitch model such as the trigger mechanism
(Glampedakis & Andersson 2009; Warszawski et al. 2012)
and ignoring the entrainment of neutrons in the crust. In
this model the dynamics of the vortices are such that, on
timsescales of ⇤ 3yrs, crustal superfluid neutrons depin in
a front which moves radially outwards from the base of the
crust until it reaches densities at which the pinning force is a
maximum. At this point, the accumulated angular momen-
tum of the pinning front is transferred to the charged com-
ponent of the star suddenly, and the glitch occurs. Due to
the analogy of pushing snow slowly up a hill before releasing
it down the other side, it is referred to as the “snowplough”
model by the authors. One feature of the model is that the
vortices are pinned only in the region where they are totally
immersed in the crust, an equatorial ring which accounts for
⇤ 10% the mass of the whole crust, therefore reducing �I
by a factor of ⇤10. In this model, the crust-core coupling is
such that I ⌅ Itot, and so the ratio �I/I is still able to ac-
count for the observed Vela glitch activity for selected EoSs
(Seveso et al. 2012). In addition, it can also account for the
initial relative post-glitch acceleration of the crust inferred
from the 2000 Vela glitch timing data (Dodson et al. 2002).
With entrainment yet to be taken into account, however, it
remains an open question as to the e⌃cacy of the the model.

The aim of this paper is to examine the range of pre-
dictions for �I/I and for the initial post-glitch acceleration
within the framework of the “snowplough” model by varying

the most uncertain nuclear matter parameters over their ex-
perimentally and theoretically constrained ranges, and tak-
ing into account entrainment in a simple way akin to the
recent studies (Chamel 2012a; Andersson et al. 2012). To
do this, we shall apply systematically and consistently gen-
erated sequences of crust and core EOSs together with the
relevant crust compositions (Newton et al. 2011) to mod-
eling glitches for the first time. The consistent modeling of
crust and core properties when exploring the dependence of
neutron star observables has been presented before (Gear-
heart et al. 2011; Wen et al. 2012; Newton et al. 2011), and
here extends to modeling the crust thickness, density of su-
perfluid neutrons throughout the crust, core EOS and core
proton fraction using the same underlying nuclear matter
EOSs.

Much e⇤ort has been devoted to constraining the EOS
of nuclear and neutron star matter, particularly through
constraining the density dependence of the symmetry en-
ergy at nuclear saturation density n0, parameterized by
L = 3n0p0 where p0 is the pressure of pure neutron matter
at saturation density, which is strongly correlated with the
pressure in neutron stars at that density. Nuclear experimen-
tal probes (for a recent review see (Tsang et al. 2012)) give a
conservative range of L = 25�105 MeV, although some more
recent results on the nuclear experimental side (Lattimer
& Lim 2012), as well as tentative constraints from neutron
star observation (Newton & Li 2009; Gearheart et al. 2011;
Wen et al. 2012; Steiner & Gandolfi 2012) and from ab-initio
pure neutron matter calculations (Gezerlis & Carlson 2010;
Hebeler & Schwenk 2010; Gandolfi et al. 2012) favor the
lower half of that range (although, for a counter-example,
see e.g. (Sotani et al. 2012)). The high-density behavior of
the EOS is even more uncertain both theoretically and ex-
perimentally (Xiao et al. 2009; Russotto et al. 2011), even
if one restricts the composition to purely nucleonic matter,
with some of the only constraints coming from analysis of
heavy-ion collisions (Danielewicz et al. 2002) and the ob-
servation of a 1.97M� neutron star (Demorest et al. 2010).
In this paper we shall explore the impact of systematically
varying the density dependence of the symmetry energy L
at saturation density on the glitch model.

In Section 2 we describe our glitch modeling and series
of EOSs and how we compare with observational quantities.
In Section 3 we present and discuss our results and in Section
4 we discuss our conclusions.

2 THE GLITCH MODEL

The observed angular frequency, ⇥, of a pulsar is presumed
to be that of its ionic crustal lattice in which the magnetic
field lines are anchored. When considering glitch sizes and
immediate post-glitch evolution, it is important to define
that component of the star strongly coupled to the lattice
on timescales comparable with the glitch rise time, which is
observationally constrained to be ⇥ 40s (Dodson et al. 2002).
In our minimal model of the core which contains purely nu-
cleonic matter, this component contains the core protons
and some fraction of the core neutrons, and we shall refer
to it as the charged component of the star.

We will outline the glitch mechanism according to the
recently studied “snowplough” model, the first attempt at a
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confronted	  by	  Vela	  glitch	  ac4vity	  –	  	  
constrains	  EOS	  

Crust	  entrainment	  kills	  crust	  superfluid	  origin	  
for	  glitches?	  	  
(Chamel,	  2012;	  Andersson,	  Glampedakis,	  Ho,	  Espinoza	  2012)	  

Saved	  by	  core	  superfluid	  coupling	  on	  4mescales	  
larger	  than	  glitch	  rise	  4me?	  
(Link	  2012;	  Haskell	  et	  al	  2012;	  Seveso	  et	  al	  2012)	  
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TABLE 1
Parameters for the Glitch Epoch

51,559.3190a

Parameter Value

n (Hz) . . . . . . . . . . . . . . . . . 11.194615396005
(Hz s!1) . . . . . . . . . . . . .ṅ !1.55615E!11
(Hz s!2) . . . . . . . . . . . . .n̈ 1.028E!21
(Hz) . . . . . . . . . . . . . .Dnp 3.45435(5)E!05
(Hz s!1) . . . . . . . . . .˙Dnp !1.0482(2)E!13

tn . . . . . . . . . . . . . . . . . . . . . . minutes1.2! 0.2
00.53(3) days
03.29(3) days
19.07(2) days

(#10!6 Hz) . . . . . .Dnn 0.020(5)
0.31(2)
0.193(2)
0.2362(2)

DM . . . . . . . . . . . . . . . . . . . 67.99
a The errors are the 1 j values. The data

fit is from MJD 51,505 to 51,650 (from 1999
November to 2000 April). Fig. 2.—Previously unobserved fast decay, with 10 s folds. The other decay

terms are removed, revealing the later start and decay of the fastest term.

Fig. 1.—Arrival time residuals from the preglitch model for both the three-frequency (left) and single-pulse (right) systems. The left panel has folds of 2 minutes,
and the right panel has folds of 10 s.

However, it should be noted that some investigators set the
permanent change terms, and , to zero. We have allowed˙ ¨Dn Dnp p

to take nonzero values, but we keep as zero. Both of˙ ¨Dn Dnp p
these terms affect only the longest timescales, where both tim-
ing noise and the occurrence of the subsequent glitches make
definitive separation impossible.
The data presented here were recorded between MJD 51,505

and 51,650. The arrival time data have been transformed to the
solar system barycenter using standard techniques. The position
and proper motion of the Vela pulsar were defined by data from
the radio VLBI position of Legge (2001). The recorded TOAs
from all frequencies and both systems were fitted in the pro-
gram TEMPO.1 The results of this fit are given in Table 1.
The left panel of Figure 1 shows the residuals from the

prejump fit for data taken on 2000 January 16 (MJD 51,559)
with the full polarization system. Shortly after 07:34 UT, the
residuals diverge from the fit, indicating a sudden decrease in
pulse period. The right panel of Figure 1 shows an hour of
data starting at MJD 51,559.3. Individual data points represent
10 s averages constructed from the single-pulse data. The period
jump occurs on a very short timescale, without warning. The
observations are consistent with an instantaneous change in
period; modeling has shown that a spin-up timescale of 40 s
would produce a 3 j signal.

1 See http://pulsar.princeton.edu/tempo (J. Taylor, R. Manchester, D. Nice,
J. Weisberg, A. Irwin, N. Wex, & E. Standish 1970).

The separation into four timescales is clear. The longer three
decay terms are similar to those previously reported (Alpar et
al. 1993; Flanagan 1990) and are in an approximately equal
ratio of 5.9 : 5.7. These have been associated with the vortex
creep models by Alpar et al. (1993) and others. The fast decay
timescale, not previously observed (or observable), is shown
separated from the other effects in Figure 2. We have subtracted
the terms found using TEMPO in the 2 minute data from the
single-pulse data folded for 10 s. In this plot, a gradual spin-
up (as opposed to an instantaneous one) would be a negative
excursion around the projected time of the glitch since we
would have overestimated the phase in the model. We see a
positive excursion, followed by a rapid decay. A positive ex-
cursion could be produced by the pulsar slowing down just
before the glitch or, more likely, if the estimate of the glitch
epoch was too early because there was an extra component not
resolvable in the 2 minute data. Once the original fit was re-
moved, this would give a linear rise with the gradient foundDn
in the 2 minutes data, followed by a decay. We have fitted this
rise ( ) followed by a fourth exponential decay term to giveDnDt
the true glitch epoch and the fastest decay term.

4. THE SINGLE-PULSE SYSTEM

Since the acceleration of the crust cannot be instantaneous,
it should be possible to observe the spin-up of the rotation
period of the pulsar. The parallel single-pulse system designed
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one may infer that only some fraction of the core neutron su-
perfluid will contribute to the charged component of the star
at the time of glitch. That fraction is quite uncertain, and
enters into the model as a free parameter Yg, but above es-
timates indicate that it is possible to have Yg ⌅ 1 (Haskell
et al. 2012; Link 2012). We also denote the total neutron
fraction of the core at a given radius r by Q(r). Then the
MoI of the charged component can be expressed (Seveso
et al. 2012)

Ic =
8⇤
3

⇤ R

0

r4[1�Q(r)(1�Ygl)]e
�⇥(r) ⇧̄(r)

⇥

("(r) + P (r))⌅
1� 2GM(r)/r

dr,

(5)
The total moment of inertia of superfluid neutrons in

the inner crust of the star is given by

I(tot)csf =
8⇤
3

⇤ Router

Rinner

r4e�⇥(r) ⇧̄(r)
⇥

("n(r) + Pn(r))⌅
1� 2GM(r)/r

dr (6)

where "n(r) is the energy density of crustal superfluid neu-
trons, Pn(r) is the pressure of the crustal superfluid neu-
trons and Rinner and Router are the radius boundaries for
the inner crust. In the model we consider, only the crustal
superfluid neutrons within the strong pinning region of the
crust, defined as the region within which vortices are totally
immersed in the inner crust, contribute to the glitch itself.
Defining

r2I =
8⇤
3
r4e�⇥(r) ⇧̄(r)

⇥

("n(r) + Pn(r))⌅
1� 2GM(r)/r

(7)

we can write the moment of inertia of the strong pinning
region of inner crust superfluid neutrons as

I(sp)csf =

⇤ ⇤/2

�outer

�⇤ R(�outer)

R(�)

r2Idr
⇥
sin ⇥d⇥ (8)

where R(⇥) is the distance from the core of the star to the
inner boundary of the strong pinning region at an angle ⇥ to
the rotation axis, R(⇥inner) ⇤ Rinner and R(⇥outer) ⇤ Router

(see Fig. 1).
Entrainment of superfluid neutrons by the crust’s lat-

tice reduces the mobility of the neutrons with respect to that
lattice. It can be shown that this e⇤ect is encoded by intro-
ducing an e⇤ective “mesoscopic” neutron mass m⇥

n (Chamel
2005; Chamel & Carter 2006; Chamel 2012b); larger val-
ues correspond to stronger coupling between the neutron
superfluid and the crust, and a reduction in the fraction of
superfluid neutrons able to store angular momentum for the
glitch event. One can include this e⇤ect by modifying the
integrand Eqn 7:

r2I ⇧ r2I⇥ =
mn

m⇥
n(r)

r2I (9)

where m⇥
n(r) is the e⇤ective mass at radius r in the crust. We

obtain m⇥
n(r) from the results of Chamel (Chamel 2012b)

by interpolating between the values calculated at specific
densities to find the e⇤ective mass at arbitrary locations in
the inner crust.

The work of Chamel (Chamel 2012b) ignores the spin-
orbit interaction, which the author notes might weaken the

entrainment e⇤ect. In order to account for this and other
uncertainties, we introduce a parameter e which we use to
control the strength of the entrainment:

m⇥
n ⇧ 1 + (m⇥

n � 1)e (10)

where e = 0 corresponds to no entrainment and e = 1 cor-
responds to full strength entrainment.

The analysis of (Link et al. 1999) identifies the mini-
mum amount of angular momentum stored in the crustal
superfluid reservoir Icsf relative to that of the charged com-
ponent of the star Ic with the parameter G defined

I(sp)csf

Ic
� ⇥̄

|⇥̇|
A ⇤ G (11)

where A is the glitch activity parameter of the pulsar, that
is the slope of the straight line fit to a plot of the cumulative
relative glitch size over time (Link et al. 1999). Currently for
the Vela pulsar, G = 0.016 (Espinoza et al. 2011).

In addition, the 2001 Vela glitch yielded the first mea-
surement of the relative angular acceleration of the charged
component just after the glitch K ⇤ �⇥̇gl/⇥̇0 = 18 ± 6
(Dodson et al. 2002). Assuming that this relative accelera-
tion is the result of the initial re-coupling of the remaining
uncoupled component of the core to the charged component
(i.e. the change in the e⇤ective moment of inertia of the star
acted upon by the magnetic torque), it can be calculated
within the model as (Pizzochero 2011)

�⇥̇gl

⇥̇0

=
(Itot � Ic)

Ic
⇤ K (12)

We shall confront our estimates of the MoI of the var-
ious components of the star with these two observed quan-
tities.

2.1 Nuclear matter parameters and crust and
core equations of state

The microphysical ingredients in the glitch model include
the total pressure and energy density P (nb), ⌃(nb) and those
of the superfluid neutrons Pn(nb), ⌃n(nb) as a function of
baryon density throughout the core and the crust, as well
as the crust-core transition baryon density ncc, the e⇤ective
mass of neutrons in the crust m⇥

n(r)..
In order to calculate the crust and core EOSs a model

for uniform nuclear matter is required. Nuclear matter mod-
els can be characterized by their behavior around nuclear
saturation density n0 = 0.16 fm�3, the density region from
which much of our experimental information is extracted.
We can denote the energy per particle of nuclear matter
around saturation density by E(n, �), where n is the baryon
density and � = 1 � 2x the isospin asymmetry, where x is
the proton fraction. x = 0.5, � = 0 corresponds to symmet-
ric nuclear matter (SNM), and x = 0, � = 1 to pure neutron
matter (PNM). By expanding E(n, x) about � = 0 we can
define the symmetry energy S(n),

E(n, �) = E0(⌅) + S(n)�2 + ..., (13)
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densities to find the e⇤ective mass at arbitrary locations in
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orbit interaction, which the author notes might weaken the
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where A is the glitch activity parameter of the pulsar, that
is the slope of the straight line fit to a plot of the cumulative
relative glitch size over time (Link et al. 1999). Currently for
the Vela pulsar, G = 0.016 (Espinoza et al. 2011).

In addition, the 2001 Vela glitch yielded the first mea-
surement of the relative angular acceleration of the charged
component just after the glitch K ⇤ �⇥̇gl/⇥̇0 = 18 ± 6
(Dodson et al. 2002). Assuming that this relative accelera-
tion is the result of the initial re-coupling of the remaining
uncoupled component of the core to the charged component
(i.e. the change in the e⇤ective moment of inertia of the star
acted upon by the magnetic torque), it can be calculated
within the model as (Pizzochero 2011)
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We shall confront our estimates of the MoI of the var-
ious components of the star with these two observed quan-
tities.

2.1 Nuclear matter parameters and crust and
core equations of state

The microphysical ingredients in the glitch model include
the total pressure and energy density P (nb), ⌃(nb) and those
of the superfluid neutrons Pn(nb), ⌃n(nb) as a function of
baryon density throughout the core and the crust, as well
as the crust-core transition baryon density ncc, the e⇤ective
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In order to calculate the crust and core EOSs a model

for uniform nuclear matter is required. Nuclear matter mod-
els can be characterized by their behavior around nuclear
saturation density n0 = 0.16 fm�3, the density region from
which much of our experimental information is extracted.
We can denote the energy per particle of nuclear matter
around saturation density by E(n, �), where n is the baryon
density and � = 1 � 2x the isospin asymmetry, where x is
the proton fraction. x = 0.5, � = 0 corresponds to symmet-
ric nuclear matter (SNM), and x = 0, � = 1 to pure neutron
matter (PNM). By expanding E(n, x) about � = 0 we can
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Figure 8. (Color online) Fraction of the core superfluid coupled to the crust at the time glitch below which the Vela constraint on G
is satisfied for a given value of L. (a-c): Results are shown for a 1.4M⇥ star, crustal entrainment strengths of e = 0 (solid colored line),
0.33 (dashed line), 0.67 (dotted line) and 1 (dash-dotted line) and for a strong pinning region that is contained only within the inner
crust nmax=ncc (a), and that extends into the outer core by a density of 0.03 fm�3 (b) and 0.05 fm�3 (c). (d-f): Results are shown for
e = 1, neutron star masses of 1.0 (solid line), 1.2 (dashed line), 1.4 (dotted line) and 1.6M⇥ (dash-dotted line) and for a strong pinning
region that is contained only within the inner crust nmax=ncc (d), and that extends into the outer core by a density of 0.03 fm�3 (e)
and 0.05 fm�3 (f).

25 < L < 105 MeV resulting from a wide variety of experi-
mental and observational constraints, while simultaneously
being constrained to fit the results of state-of-the-art PNM
calculations at low density. In addition to the conservative
range of L, we pay attention to the range of L suggested by
the congruence of the experimental and observational con-
straints 30 � L � 60 MeV.

We calculate (i) the ratio of the moment of inertia of
the crustal superfluid neutrons strongly pinned in the crust
to that of the components of the star coupled to the crust
on glitch rise times, G, and (ii) the relative angular accel-
eration of the crust immediately post-glitch K under the
assumption that the post-glitch acceleration is caused en-
tirely by the increase in the e�ective moment of inertia of
the star. The average giant glitch activity of the Vela pul-
sar predicts GVela > 1.6% and timing of the 2000 Vela glitch
gives KVela = 18±6. Our particular aim is to examine claims
that the inclusion of crustal neutron entrainment by the lat-
tice renders the crustal neutrons an insu⌅cient angular mo-
mentum reservoir to explain the Vela glitch activity, within
the context of the “snowplough” model.

In addition to L, we have examined the dependence of
predictions on the fraction of core neutrons coupled to the
crust at the time of glitch Yg, the strength of the crustal
neutron entrainment e resulting from Bragg scattering of
neutrons o� the crustal nuclear lattice, and the penetra-
tion o� pinned neutron vortices into the outer core up to a

baryon density of nmax, and found the region of model space
consistent with the observational constraints.

Our main findings can be summarized as follows:

• The general trends observed are as follows: the observed
value of K is relatively high compared to model predictions,
and favors a soft symmetry energy at saturation density (low
values of L) and low core superfluid fraction coupled to the
crust at the time of the glitch, Yg. A softer symmetry energy
results in more compact neutron stars that undergo larger
accelerations for a given applied torque. The observed value
of G, on the other hand, favors a sti�er symmetry energy
at saturation density (higher values of L), which produces
larger neutron stars of a given mass and thicker crusts, and
therefore an increased MoI of crustal superfluid neutrons
participating in the glitch. Thus observational constraints
on G and K together are potentially quite constraining on
the EOS around saturation density. We note also that the
trends with L persist even if the strong pinning region is
extended into the core.

• GVela and KVela = 18 ± 6 together constrain L � 45
MeV and Yg � 0.04. These values are obtained consider-
ing strong pinning solely in the crust only when no crustal
entrainment is present; when crustal entrainment is at full
strength e = 1, these values are obtained when the strong
pinning region penetrates into the outer core by up to
0.05fm�3 above the crust core transition density. Thus, to-
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Figure 8. (Color online) Fraction of the core superfluid coupled to the crust at the time glitch below which the Vela constraint on G
is satisfied for a given value of L. (a-c): Results are shown for a 1.4M⇥ star, crustal entrainment strengths of e = 0 (solid colored line),
0.33 (dashed line), 0.67 (dotted line) and 1 (dash-dotted line) and for a strong pinning region that is contained only within the inner
crust nmax=ncc (a), and that extends into the outer core by a density of 0.03 fm�3 (b) and 0.05 fm�3 (c). (d-f): Results are shown for
e = 1, neutron star masses of 1.0 (solid line), 1.2 (dashed line), 1.4 (dotted line) and 1.6M⇥ (dash-dotted line) and for a strong pinning
region that is contained only within the inner crust nmax=ncc (d), and that extends into the outer core by a density of 0.03 fm�3 (e)
and 0.05 fm�3 (f).

25 < L < 105 MeV resulting from a wide variety of experi-
mental and observational constraints, while simultaneously
being constrained to fit the results of state-of-the-art PNM
calculations at low density. In addition to the conservative
range of L, we pay attention to the range of L suggested by
the congruence of the experimental and observational con-
straints 30 � L � 60 MeV.

We calculate (i) the ratio of the moment of inertia of
the crustal superfluid neutrons strongly pinned in the crust
to that of the components of the star coupled to the crust
on glitch rise times, G, and (ii) the relative angular accel-
eration of the crust immediately post-glitch K under the
assumption that the post-glitch acceleration is caused en-
tirely by the increase in the e�ective moment of inertia of
the star. The average giant glitch activity of the Vela pul-
sar predicts GVela > 1.6% and timing of the 2000 Vela glitch
gives KVela = 18±6. Our particular aim is to examine claims
that the inclusion of crustal neutron entrainment by the lat-
tice renders the crustal neutrons an insu⌅cient angular mo-
mentum reservoir to explain the Vela glitch activity, within
the context of the “snowplough” model.

In addition to L, we have examined the dependence of
predictions on the fraction of core neutrons coupled to the
crust at the time of glitch Yg, the strength of the crustal
neutron entrainment e resulting from Bragg scattering of
neutrons o� the crustal nuclear lattice, and the penetra-
tion o� pinned neutron vortices into the outer core up to a

baryon density of nmax, and found the region of model space
consistent with the observational constraints.

Our main findings can be summarized as follows:

• The general trends observed are as follows: the observed
value of K is relatively high compared to model predictions,
and favors a soft symmetry energy at saturation density (low
values of L) and low core superfluid fraction coupled to the
crust at the time of the glitch, Yg. A softer symmetry energy
results in more compact neutron stars that undergo larger
accelerations for a given applied torque. The observed value
of G, on the other hand, favors a sti�er symmetry energy
at saturation density (higher values of L), which produces
larger neutron stars of a given mass and thicker crusts, and
therefore an increased MoI of crustal superfluid neutrons
participating in the glitch. Thus observational constraints
on G and K together are potentially quite constraining on
the EOS around saturation density. We note also that the
trends with L persist even if the strong pinning region is
extended into the core.

• GVela and KVela = 18 ± 6 together constrain L � 45
MeV and Yg � 0.04. These values are obtained consider-
ing strong pinning solely in the crust only when no crustal
entrainment is present; when crustal entrainment is at full
strength e = 1, these values are obtained when the strong
pinning region penetrates into the outer core by up to
0.05fm�3 above the crust core transition density. Thus, to-
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we shall referred to as the charged component of the star),
�I/I � 1.6% ⇥ G (Link et al. 1999). Assuming the angular
momentum reservoir is the whole of the crustal neutron su-
perfluid �I = Icsf and the charged component it couples to
is essentially the whole star I = Itot, many realistic neutron
star (NS) equations of state (EoSs) can satisfy the condi-
tion �I/I � 1%, and indeed it can be used to constrain
the NS EoS (Lorenz et al. 1993; Link et al. 1999). However,
recent calculations of the strength of entrainment of con-
duction neutrons by the crustal lattice via Bragg scattering
suggest that the fraction of neutrons in the crust decoupled
from the charged component of the star and able to act as
the angular momentum reservoir is e⇤ectively �I ⇤ 0.2Icsf ,
making �I/I too small to explain the observed glitch sizes
at a first glance (Chamel 2012a,b; Andersson et al. 2012),
and thus suggesting one must go beyond the crust to find the
angular momentum reservoir. These studies assume a tight
coupling between crust and core so that I ⇤ Itot. However,
estimates of the crust-core coupling timescales due to inter-
actions of neutron vortices and type-I or type-II supercon-
ducting protons (Alpar & Sauls (1988); Sedrakian (2005);
Andersson et al. (2006); Jones (2006); Babaev (2009); Link
(2012)) do not preclude the possibility of only a small frac-
tion of the core neutrons being coupled to the crust at the
time of glitch, and in the latter case suggest that this is in
fact likely. Therefore it is possible that I ⌅ Itot, allowing
the ratio �I/I to satisfy the lower bound of 1.6% again with
only crustal superfluid neutrons involved.

Recently, a detailed model of such a scenario incorpo-
rating microscopic calculations of the pinning force through-
out the crust and a hydrodynamic evolution of the vor-
tices, was shown to explain qualitatively the Vela glitch
sizes and post-glitch rotational evolution and potentially
constrain the EOS (Haskell et al. 2012; Pizzochero 2011;
Seveso et al. 2012), despite remaining uncertainties in as-
pects of the glitch model such as the trigger mechanism
(Glampedakis & Andersson 2009; Warszawski et al. 2012)
and ignoring the entrainment of neutrons in the crust. In
this model the dynamics of the vortices are such that, on
timsescales of ⇤ 3yrs, crustal superfluid neutrons depin in
a front which moves radially outwards from the base of the
crust until it reaches densities at which the pinning force is a
maximum. At this point, the accumulated angular momen-
tum of the pinning front is transferred to the charged com-
ponent of the star suddenly, and the glitch occurs. Due to
the analogy of pushing snow slowly up a hill before releasing
it down the other side, it is referred to as the “snowplough”
model by the authors. One feature of the model is that the
vortices are pinned only in the region where they are totally
immersed in the crust, an equatorial ring which accounts for
⇤ 10% the mass of the whole crust, therefore reducing �I
by a factor of ⇤10. In this model, the crust-core coupling is
such that I ⌅ Itot, and so the ratio �I/I is still able to ac-
count for the observed Vela glitch activity for selected EoSs
(Seveso et al. 2012). In addition, it can also account for the
initial relative post-glitch acceleration of the crust inferred
from the 2000 Vela glitch timing data (Dodson et al. 2002).
With entrainment yet to be taken into account, however, it
remains an open question as to the e⌃cacy of the the model.

The aim of this paper is to examine the range of pre-
dictions for �I/I and for the initial post-glitch acceleration
within the framework of the “snowplough” model by varying

the most uncertain nuclear matter parameters over their ex-
perimentally and theoretically constrained ranges, and tak-
ing into account entrainment in a simple way akin to the
recent studies (Chamel 2012a; Andersson et al. 2012). To
do this, we shall apply systematically and consistently gen-
erated sequences of crust and core EOSs together with the
relevant crust compositions (Newton et al. 2011) to mod-
eling glitches for the first time. The consistent modeling of
crust and core properties when exploring the dependence of
neutron star observables has been presented before (Gear-
heart et al. 2011; Wen et al. 2012; Newton et al. 2011), and
here extends to modeling the crust thickness, density of su-
perfluid neutrons throughout the crust, core EOS and core
proton fraction using the same underlying nuclear matter
EOSs.

Much e⇤ort has been devoted to constraining the EOS
of nuclear and neutron star matter, particularly through
constraining the density dependence of the symmetry en-
ergy at nuclear saturation density n0, parameterized by
L = 3n0p0 where p0 is the pressure of pure neutron matter
at saturation density, which is strongly correlated with the
pressure in neutron stars at that density. Nuclear experimen-
tal probes (for a recent review see (Tsang et al. 2012)) give a
conservative range of L = 25�105 MeV, although some more
recent results on the nuclear experimental side (Lattimer
& Lim 2012), as well as tentative constraints from neutron
star observation (Newton & Li 2009; Gearheart et al. 2011;
Wen et al. 2012; Steiner & Gandolfi 2012) and from ab-initio
pure neutron matter calculations (Gezerlis & Carlson 2010;
Hebeler & Schwenk 2010; Gandolfi et al. 2012) favor the
lower half of that range (although, for a counter-example,
see e.g. (Sotani et al. 2012)). The high-density behavior of
the EOS is even more uncertain both theoretically and ex-
perimentally (Xiao et al. 2009; Russotto et al. 2011), even
if one restricts the composition to purely nucleonic matter,
with some of the only constraints coming from analysis of
heavy-ion collisions (Danielewicz et al. 2002) and the ob-
servation of a 1.97M� neutron star (Demorest et al. 2010).
In this paper we shall explore the impact of systematically
varying the density dependence of the symmetry energy L
at saturation density on the glitch model.

In Section 2 we describe our glitch modeling and series
of EOSs and how we compare with observational quantities.
In Section 3 we present and discuss our results and in Section
4 we discuss our conclusions.

2 THE GLITCH MODEL

The observed angular frequency, ⇥, of a pulsar is presumed
to be that of its ionic crustal lattice in which the magnetic
field lines are anchored. When considering glitch sizes and
immediate post-glitch evolution, it is important to define
that component of the star strongly coupled to the lattice
on timescales comparable with the glitch rise time, which is
observationally constrained to be ⇥ 40s (Dodson et al. 2002).
In our minimal model of the core which contains purely nu-
cleonic matter, this component contains the core protons
and some fraction of the core neutrons, and we shall refer
to it as the charged component of the star.

We will outline the glitch mechanism according to the
recently studied “snowplough” model, the first attempt at a
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one may infer that only some fraction of the core neutron su-
perfluid will contribute to the charged component of the star
at the time of glitch. That fraction is quite uncertain, and
enters into the model as a free parameter Yg, but above es-
timates indicate that it is possible to have Yg ⌅ 1 (Haskell
et al. 2012; Link 2012). We also denote the total neutron
fraction of the core at a given radius r by Q(r). Then the
MoI of the charged component can be expressed (Seveso
et al. 2012)

Ic =
8⇤
3

⇤ R

0

r4[1�Q(r)(1�Ygl)]e
�⇥(r) ⇧̄(r)

⇥

("(r) + P (r))⌅
1� 2GM(r)/r

dr,

(5)
The total moment of inertia of superfluid neutrons in

the inner crust of the star is given by

I(tot)csf =
8⇤
3

⇤ Router

Rinner

r4e�⇥(r) ⇧̄(r)
⇥

("n(r) + Pn(r))⌅
1� 2GM(r)/r

dr (6)

where "n(r) is the energy density of crustal superfluid neu-
trons, Pn(r) is the pressure of the crustal superfluid neu-
trons and Rinner and Router are the radius boundaries for
the inner crust. In the model we consider, only the crustal
superfluid neutrons within the strong pinning region of the
crust, defined as the region within which vortices are totally
immersed in the inner crust, contribute to the glitch itself.
Defining

r2I =
8⇤
3
r4e�⇥(r) ⇧̄(r)

⇥

("n(r) + Pn(r))⌅
1� 2GM(r)/r

(7)

we can write the moment of inertia of the strong pinning
region of inner crust superfluid neutrons as

I(sp)csf =

⇤ ⇤/2

�outer

�⇤ R(�outer)

R(�)

r2Idr
⇥
sin ⇥d⇥ (8)

where R(⇥) is the distance from the core of the star to the
inner boundary of the strong pinning region at an angle ⇥ to
the rotation axis, R(⇥inner) ⇤ Rinner and R(⇥outer) ⇤ Router

(see Fig. 1).
Entrainment of superfluid neutrons by the crust’s lat-

tice reduces the mobility of the neutrons with respect to that
lattice. It can be shown that this e⇤ect is encoded by intro-
ducing an e⇤ective “mesoscopic” neutron mass m⇥

n (Chamel
2005; Chamel & Carter 2006; Chamel 2012b); larger val-
ues correspond to stronger coupling between the neutron
superfluid and the crust, and a reduction in the fraction of
superfluid neutrons able to store angular momentum for the
glitch event. One can include this e⇤ect by modifying the
integrand Eqn 7:

r2I ⇧ r2I⇥ =
mn

m⇥
n(r)

r2I (9)

where m⇥
n(r) is the e⇤ective mass at radius r in the crust. We

obtain m⇥
n(r) from the results of Chamel (Chamel 2012b)

by interpolating between the values calculated at specific
densities to find the e⇤ective mass at arbitrary locations in
the inner crust.

The work of Chamel (Chamel 2012b) ignores the spin-
orbit interaction, which the author notes might weaken the

entrainment e⇤ect. In order to account for this and other
uncertainties, we introduce a parameter e which we use to
control the strength of the entrainment:

m⇥
n ⇧ 1 + (m⇥

n � 1)e (10)

where e = 0 corresponds to no entrainment and e = 1 cor-
responds to full strength entrainment.

The analysis of (Link et al. 1999) identifies the mini-
mum amount of angular momentum stored in the crustal
superfluid reservoir Icsf relative to that of the charged com-
ponent of the star Ic with the parameter G defined

I(sp)csf

Ic
� ⇥̄

|⇥̇|
A ⇤ G (11)

where A is the glitch activity parameter of the pulsar, that
is the slope of the straight line fit to a plot of the cumulative
relative glitch size over time (Link et al. 1999). Currently for
the Vela pulsar, G = 0.016 (Espinoza et al. 2011).

In addition, the 2001 Vela glitch yielded the first mea-
surement of the relative angular acceleration of the charged
component just after the glitch K ⇤ �⇥̇gl/⇥̇0 = 18 ± 6
(Dodson et al. 2002). Assuming that this relative accelera-
tion is the result of the initial re-coupling of the remaining
uncoupled component of the core to the charged component
(i.e. the change in the e⇤ective moment of inertia of the star
acted upon by the magnetic torque), it can be calculated
within the model as (Pizzochero 2011)

�⇥̇gl

⇥̇0

=
(Itot � Ic)

Ic
⇤ K (12)

We shall confront our estimates of the MoI of the var-
ious components of the star with these two observed quan-
tities.

2.1 Nuclear matter parameters and crust and
core equations of state

The microphysical ingredients in the glitch model include
the total pressure and energy density P (nb), ⌃(nb) and those
of the superfluid neutrons Pn(nb), ⌃n(nb) as a function of
baryon density throughout the core and the crust, as well
as the crust-core transition baryon density ncc, the e⇤ective
mass of neutrons in the crust m⇥

n(r)..
In order to calculate the crust and core EOSs a model

for uniform nuclear matter is required. Nuclear matter mod-
els can be characterized by their behavior around nuclear
saturation density n0 = 0.16 fm�3, the density region from
which much of our experimental information is extracted.
We can denote the energy per particle of nuclear matter
around saturation density by E(n, �), where n is the baryon
density and � = 1 � 2x the isospin asymmetry, where x is
the proton fraction. x = 0.5, � = 0 corresponds to symmet-
ric nuclear matter (SNM), and x = 0, � = 1 to pure neutron
matter (PNM). By expanding E(n, x) about � = 0 we can
define the symmetry energy S(n),

E(n, �) = E0(⌅) + S(n)�2 + ..., (13)
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one may infer that only some fraction of the core neutron su-
perfluid will contribute to the charged component of the star
at the time of glitch. That fraction is quite uncertain, and
enters into the model as a free parameter Yg, but above es-
timates indicate that it is possible to have Yg ⌅ 1 (Haskell
et al. 2012; Link 2012). We also denote the total neutron
fraction of the core at a given radius r by Q(r). Then the
MoI of the charged component can be expressed (Seveso
et al. 2012)
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where R(⇥) is the distance from the core of the star to the
inner boundary of the strong pinning region at an angle ⇥ to
the rotation axis, R(⇥inner) ⇤ Rinner and R(⇥outer) ⇤ Router

(see Fig. 1).
Entrainment of superfluid neutrons by the crust’s lat-

tice reduces the mobility of the neutrons with respect to that
lattice. It can be shown that this e⇤ect is encoded by intro-
ducing an e⇤ective “mesoscopic” neutron mass m⇥

n (Chamel
2005; Chamel & Carter 2006; Chamel 2012b); larger val-
ues correspond to stronger coupling between the neutron
superfluid and the crust, and a reduction in the fraction of
superfluid neutrons able to store angular momentum for the
glitch event. One can include this e⇤ect by modifying the
integrand Eqn 7:

r2I ⇧ r2I⇥ =
mn

m⇥
n(r)
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where m⇥
n(r) is the e⇤ective mass at radius r in the crust. We

obtain m⇥
n(r) from the results of Chamel (Chamel 2012b)

by interpolating between the values calculated at specific
densities to find the e⇤ective mass at arbitrary locations in
the inner crust.

The work of Chamel (Chamel 2012b) ignores the spin-
orbit interaction, which the author notes might weaken the

entrainment e⇤ect. In order to account for this and other
uncertainties, we introduce a parameter e which we use to
control the strength of the entrainment:
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n ⇧ 1 + (m⇥
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where e = 0 corresponds to no entrainment and e = 1 cor-
responds to full strength entrainment.

The analysis of (Link et al. 1999) identifies the mini-
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ponent of the star Ic with the parameter G defined
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where A is the glitch activity parameter of the pulsar, that
is the slope of the straight line fit to a plot of the cumulative
relative glitch size over time (Link et al. 1999). Currently for
the Vela pulsar, G = 0.016 (Espinoza et al. 2011).

In addition, the 2001 Vela glitch yielded the first mea-
surement of the relative angular acceleration of the charged
component just after the glitch K ⇤ �⇥̇gl/⇥̇0 = 18 ± 6
(Dodson et al. 2002). Assuming that this relative accelera-
tion is the result of the initial re-coupling of the remaining
uncoupled component of the core to the charged component
(i.e. the change in the e⇤ective moment of inertia of the star
acted upon by the magnetic torque), it can be calculated
within the model as (Pizzochero 2011)
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We shall confront our estimates of the MoI of the var-
ious components of the star with these two observed quan-
tities.

2.1 Nuclear matter parameters and crust and
core equations of state

The microphysical ingredients in the glitch model include
the total pressure and energy density P (nb), ⌃(nb) and those
of the superfluid neutrons Pn(nb), ⌃n(nb) as a function of
baryon density throughout the core and the crust, as well
as the crust-core transition baryon density ncc, the e⇤ective
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In order to calculate the crust and core EOSs a model

for uniform nuclear matter is required. Nuclear matter mod-
els can be characterized by their behavior around nuclear
saturation density n0 = 0.16 fm�3, the density region from
which much of our experimental information is extracted.
We can denote the energy per particle of nuclear matter
around saturation density by E(n, �), where n is the baryon
density and � = 1 � 2x the isospin asymmetry, where x is
the proton fraction. x = 0.5, � = 0 corresponds to symmet-
ric nuclear matter (SNM), and x = 0, � = 1 to pure neutron
matter (PNM). By expanding E(n, x) about � = 0 we can
define the symmetry energy S(n),
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Figure 2. Crust-core transition density ncc and pressure Pcc as a function of the density-slope of the symmetry energy L for the MSL
sequence of EOSs (a) and the radius R and inner crust thickness �Rinner of a 1.4M⇥ neutron star for the same sequence of models (b).
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Figure 3. (Color online) The total enthalpy density (black bold line) and that of the free neutrons (thin red line) as a function of radial
distance from the center of a 1.4M⇥ neutron star for di⇥erent value of the saturation density symmetry energy sti⇥ness L (top row; for
the MSL EOS model with L = 25 MeV (a), L = 65 (b), and L = 105 MeV (c)). Inset in each figure is a blow-up of the inner crustal
region. The radial distance corresponding to the crust-core transition density is shown by the solid vertical line, and that corresponding
to a density of 0.05 fm�3 above the transition density is shown by the dashed vertical line.

which encodes the energy cost of decreasing the proton frac-
tion of matter. Expanding the symmetry energy about � = 0
where the density parameter � = n�n0

3n0
, we obtain

S(n) = J + L�+ 1
2Ksym�2 + ..., (14)

where J , L and Ksym are the symmetry energy, its slope and
its curvature at saturation density. At present, the energy
of SNM around saturation density is well constrained by
experiment. Much experimental e⇥ort has been focused on
determining the symmetry energy J and its density depen-
dence L around nuclear saturation density (Li et al. 2008;
Tsang et al. 2012), and from these results we take as a con-
servative range 25 < L < 105 MeV in this work. We will also
pay attention, however, to the fact that the congruence of
the experimental results (Hebeler et al. 2013) favors a range
30 < L < 60 MeV.

We calculate the crust and core EOSs and the transition
density consistently using the phenomenological modified-
Skyrme-like (MSL) model (Chen et al. 2009; Newton et al.
2011). The model contains two parameters that can be sys-
tematically adjusted to vary the symmetry energy J and its
density slope L at saturation density while leaving symmet-
ric nuclear matter properties unchanged. The MSL model is
constrained by the EOS of PNM at low densities (Newton

et al. 2011; Newton et al. 2011), introducing a correlation
between the magnitude and slope of the symmetry energy
at saturation density described by J = 0.207L+20.53 MeV.
At high densities > n0 it is matched onto two successive
polytropic equations of state as described in (Steiner et al.
2010; Wen et al. 2012) in order to match the constraint on
the maximum mass of M � 2M⇥ (Demorest et al. 2010).

The crust EOS and crust-core transition densities used
in this work are obtained from a simple compressible liquid
drop model (CLDM) for the crust (Newton et al. 2011).
This model gives the composition of the crust (including the
free neutron density) and the extent of the so-called ‘pasta’
phases, in which nuclei become deformed into exotic shapes.
Full tables of our crust and core EOSs are available from our
website http://williamnewton.wordpress.com/ns-eos/.

To illustrate the relevant correlations between nuclear
matter properties and neutron star properties, we plot in
Fig. 2 as a function of L the crust-core transition densi-
ties ncc and pressures Pcc (left plot) and the radii R and
inner crust thicknesses �Rinner of a 1.4M⇥. Although ncc

decreases with L, the relevant quantity that determines the
crust thickness for a star of a given radius is Pcc, which in-
creases with L. A larger stellar radius R also gives a thicker
crust, and the right plot shows the well-known positive cor-
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