CMS Heavy Ion Results

Michael Murray, College Station 21st August 2013

A PbPb event

Centrality: Geometry of ion collisions

Centrality is percentage of events with impact parameter b smaller than a given value. In CMS centrality normally measured with HF ,ie $3 < |\eta| < 5$

3

Centrality defined by forward calorimeters

Making a hot system: $dE_T/d\eta$ vs η

Do the lead nuclei stop each other?

Scanning the Pb density profile

Centrality dependence of dE/dŋ

CMS PRELIMINARY

Jets seem to be losing energy in plasma

Energy loss per unit path length <q> probably depends upon the density of colored objects and the temperature

How can we quantify the suppression?

$R_{AA} = \frac{\text{Number of particles from a PbPb event}}{N_{\text{collisions}}* \text{Number of particles from a pp event}}$

N_{collisions} = number of individual pp collisions in a PbPb event

Does jet quenching depend on momentum?

Start from blank slate

CMS

(Non-) Suppression of colorless probes

Suppression of charged particles

EPJC 72 (2012) 1945

Suppression of inclusive jets

Jet R_{AA} looks similar to charge particles, flat at $\approx 0.5n$

Identifying bottom quarks

Look for jets with a high mass secondary vertex from a b quark

Suppression of b-quarks

- •Provides initial quark direction
- •Provides initial quark p_T

Jet/Photon momentum balance

Sequential Upsilon suppression

Sequential suppression of Y family, the least bound member is suppressed the most in PbPb collisions

Building a quarkonium-thermometer

CMS-PAS HIN-11-011

Clear hierarchy in R_{AA} of different quarkonium states

Expected in terms of binding energy

Summary

- System is extremely dense, ~ 100 time more than normal nuclei,
- Longitudinal flow not described by simple Landau Hydrodynamics
- We see a strong suppression of high momentum objects.
- As jets punch through medium they are many low momentum particles spray our to large radii.
- Systems of bound quarks like Y and J/ ψ show a characteristic melting with weakly bound systems being the most suppressed
- Thank you Joe for all you did for me & my family

Ratio of energy in peripheral/central for pPb (proton going to positive rapidity)

So far only for HF, with CASTOR and barrel should have 13.5 units of rapidity

25

$dE_T/d\eta$ at $\eta=0$ versus \sqrt{s}

$dE_T/d\eta$ vs N_{part} and η

For all η the distribution rises rapidly at low N_{part} and then levels off

Magdalena

Searching for color glass

Access to widest range phase space

Gluon density has to saturate at low x

