Reaction Dynamics in Relativistic HI collisions

Flemming Videbæk Physics Department Brookhaven National lab

Mapping space-time evolution

Identifying and Characterizing the Hot Matter

- How does the system expand and evolve? Transverse and longitudinal dynamics
- Baryon Transport: Net-baryon vs y
- Bulk Properties: multiplicity, dN/dy
- Thermodynamic and freeze-out properties: Temperatures, Particle composition vs y
- Initial Conditions/Partonic Dynamics: high- p_T vs. y

Space-Time view

- Short transition time (10⁻²³ sec) freeze-out nuclear configuration
- Formation of hot dense media
- Expansion equilibration

BROOKHAVEN

NATIONAL LABORAT

RHIC & BRAHMS

BROOKHAVEN NATIONAL LABORATORY

Produced Particles

AuAu 200 GeV 0-10% central The dN/dy shape of pion is approx. Gaussian (blue) The Landau hydro dynamic description give good description of dn/dy shape (black)

<pt>t> : specie, rapidity and centrality

 $< p_T > vs.$ centrality demonstrates increased transverse expansion for protons at y~0 and less at y~3

Weak dependence for pions

Reduced expansion and thus less medium effect at y~3

Stopping, Energy transfer

- During the reaction the energy in the projectile baryon (quarks) will be transferred.
- The natural process is that as energy is transferred, the baryon number is also transported away from the projectile rapidity.
- Baryon number is hard to measure so the net proton distribution is taken as a proxy for the baryon distributions
- dN/dy(net-B)= dN/dy(proton)-dN/dy(p-bar)

Net-proton Distributions

- pp collision at lower energies exhibits a feature where dN/dx~constant with an integral of ~0.6-0.7 $\,$
- This implies for constant $< m_T > vs$. rapidity that $dN/dy \sim exp(-y)$ •
- The present data confirms this behavior at 200 GeV. No hint of additional baryon transport from 17->200 GeV. •

Baryon Transport: rapidity loss, energy available from the collision?

Central collisions Au,Pb High rapidity preliminary 200 GeV data

Quantifying rapidity Loss

$$\delta y = y_b - \frac{2}{N_{part}} \int_0^{y_b} y \cdot dN/dy \cdot dy$$

- Conversion to net-Baryon and accounting for un-measured region results in dy = 2.1 at 200 GeV, and 2.0 at 62.4 GeV
- The corresponding energy available for particle production and transverse longitudinal expansion is 72 and 22 GeV per participant nucleon.

Average Rapidity loss

- The average rapidity loss from the 62 GeV data together with previous measurements from AGS,SPS and BRAHMS at 200 GeV
- Slowly increasing or flat trend above SPS energies.

Initial and final state effects A+A, and d+Au

- Cronin Effect
 - Initial state multiple scattering leading to R_{dA} >1
- Nuclear Shadowing
 - Depletion of low-x partons (cold nuclei)
- Gluon Saturation
 - Depletion of low-x gluons (Color Glass Condensate)
- Other suppression at large y.
 - Dominance of valence quarks (large x_F)
 - Energy conservation...

- Rapid rise in gluons described naturally by linear pQCD evolution equations
- □ This rise cannot increase forever limits on the cross-section

 \rightarrow non-linear pQCD evolution equations provide a natural way to tame this growth and lead to a saturation of gluons, characterized by the saturation scale $Q_s^2(x)$

BRAHMS d+Au results as function of rapidity and centrality

is consistent with that of CGC,

Identified Particle R_{dAu}

 R_{dAu} for identified particle consistent with charged hadrons and all exhibiting R_{dA} <=1 for p_T <3 GeV/c

 π + the dominant meson exhibits clear suppression

Correlation studies

E. Braidot for the STAR Collaboration, arXiv:1008.3989 [nucl-ex].

Uncorrected coincidence signal versus azimuthal angle difference between two forward neutral pions in p+p collisions (left) compared to peripheral (center) and central d+Au collisions (right)

Nuclear Phase Diagram

Want to get access to the nuclear phase diagram by measurement yields and kinetic properties of produced particles.

K^{-}/K^{+} vs. pbar/p universal behavior

only μ_B controls the composition of bulk matter Agree with many statistical models with T~170MeV indicating local equilibrium

Chemical Analysis

As example of analysis being done is shown result from STAR Beam Energy Scan using particle yields of many particles at mid-rapidity

Kinetic Analysis

Analysis is often done within framework of blast-wawe assuming constant Tf with a collective transverse flow characterized by a surface velocity βs

$$\frac{dN}{m_T dm_T} \propto \int_0^{R_{\text{max}}} r \, dr \, m_T I_0 \left(\frac{p_T \sinh \rho}{T_f}\right) K_1 \left(\frac{m_T \cosh \rho}{T_f}\right),$$

Energy systematics

As example of analysis being done is shown result from STAR Beam Energy Scan using particle spectra of many particles at mid-rapidity

Summary

- Significant stopping in AA collisions. About 75% of energy available for particle production.
- The near Gaussian shape of produced particles
- The baryon chemical potential μ_B is the driving physics variable for many inclusive / bulk observables (Particle ratios vs. y, vs. p_t)
- d-Au suppression observed at high rapidity has relevance for CGC and with newer results points to significant suppression at low parton x in the heavy nucleus

BRAHMS and TAMU contribution

Quark Gluon Plasma and Color Glass Condensate at RHIC? The perspective from the BRAHMS experiment.

I. Arsene^j, I. G. Bearden^g, D. Beavis^a, C. Besliu^j, B. Budick^f, H. Bøggild^g, C. Chasman^a, C. H. Christensen^g, P. Christiansen^g, J. Cibor^c, R. Debbe^a, E. Enger^l, J. J. Gaardhøje^g, M. Germinario^g, O. Hansen^g, A. Holm^g, A. K. Holme^ℓ, K. Hagel^h, H. Ito^a, E. Jakobsen^g, A. Jipa^j, F. Jundt^b, J. I. Jørdreⁱ, C. E. Jørgensen^g, R. Karabowicz^e, E. J. Kim^{a,k}, T. Kozik^e, T. M. Larsen^{g,l}, J. H. Lee^a, Y. K. Lee^d, S. Lindahl^{ℓ} G. Løvhøiden^{ℓ}, Z. Majka^e, A. Makeev^h, M. Mikelsen^l, M. J. Murray^{h,k}, J. Natowitz^h, B. Neumann^k, B. S. Nielsen^g, D. Ouerdane^g, R. Płaneta^e, F. Rami^b, C. Ristea^{g,j}, O. Ristea^j, D. Röhrichⁱ, B. H. Samset^{*l*}, D. Sandberg^g, S. J. Sanders^k, R. A. Scheetz^a, P. Staszel^g, T. S. Tveter^l, F. Videbæk^a, R. Wada^h, Z. Yinⁱ, I. S. Zgura^j,

A Brief History of BRAHMS

BRAHMS proposed in 1990, approved 95, funded 97 Construction completed in 2001, first data in 2000, Last data in June 2006

Closing

- Joe brought his group into BRAHMS
 with important contributions
 - Zero Degree Calorimeter First at RHIC
 - Online and analysis framework and software
 - Ideas and analysis on thermalization
- He also got Z.Majka and the Krakow group involved
 - In Drift Chamber construction and analysis
- Enjoy the future

